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Abstract 
 

Post-Traumatic Stress Disorder (PTSD) is a complex anxiety disorder affecting many combat-exposed 
soldiers. Current diagnosis of PTSD is survey-based and is not used to diagnose stages of the disorder, 
reliably inform effective treatment strategies, or predict recovery/symptom changes. Thus, there is a need 
to identify robust biomarkers for accurate diagnosis, prognosis, and evaluation of therapeutics. Using the 
currently available blood data from the Systems Biology of PTSD Consortium, we sought to provide 
greater insights into the complex underlying biophysical networks of PTSD using a variety of statistical, 
machine learning, and dynamic modeling techniques. Primarily, our analysis was completed on an age 
and ethnicity-matched male cohort of 83 PTSD and 83 combat-exposed control subjects, a preliminary 
validation cohort for some data types, and a small of cohort of recalled subjects from the original 83-83 
cohort. Using this available data, we focused our efforts on five aims: (1) characterization of disease 
signals, and affected biological pathways in PTSD, (2) development and application of single ‘omic 
biomarker identification tools, (3) integration of multi-omics datasets for biomarker identification, (4) 
characterization of DNA methylation-based subtypes of PTSD, (5) development of an HPA-circadian-
metabolic dynamic model, and (6) development of data analysis pipelines for large molecular datasets.  
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Figure 1.1 Systems biology approach for the study of PTSD: a multitude of data types can be experimentally 
collected by probing biological systems at different scales. This wealth of data is then further processed by 
employing mathematical and computational techniques (e.g., statistics, machine learning, computational 
modeling) to gain insight into the system under study (from [3]). 

1. Background 

Post-Traumatic Stress Disorder (PTSD) is a psychological condition occurring in some people after 
experiencing traumatic events [1-2]. The diagnosis and treatment of PTSD poses a challenging problem 
for contemporary medicine in that its primary effects are mediated through the brain, and we have a poor 
understanding of the molecular process underlying the progression of the disease. The assessment 
methods for PTSD are largely based on clinical interviews and sensory tests; these may be highly 
subjective tests with significant uncertainty. Therefore, there is an urgent need to develop clinically 
relevant molecular biomarkers for PTSD diagnosis. The Systems Biology of PTSD Consortium (PIs: 
Charles Marmar and Marti Jett) has ascertained blood samples from approximately 350 total PTSD and 
control subjects for molecular data analysis, including genetics, epigenetics, proteomics, metabolomics, 
transcriptomics, miRNA, and endocrine marker studies. Using a systems biology approach, data across 
these length scales can be integrated to characterize and refine our understanding of PTSD (Figure 1.1) 
[3]. Primarily, the goals of this consortium are to identify a robust and accurate PTSD biomarker panel 
from this multi-omic dataset. A summary of the currently available molecular and clinical data is shown 
in Table 1.1. The subjects have been divided into an initial male discovery cohort of 83 PTSD and 83 age 
and ethnicity-matched controls, a male validation cohort, a female cohort, and a cohort of subjects 
returning for a follow-up study (the recall cohort). Some analysis of the 83-83 cohort was divided into 
training on a 52-52 subset, with validation on the remaining 31-31 subjects. 

Table 1.1 Summary of currently available data, as of January 1, 2017. 
 # of 

features 
Male Discovery Male Validating  Female  Recall  

# 
PTSD  

# 
Control 

# PTSD # 
Control 

# PTSD # 
Control 

# 
PTSD 

# 
Control 

Clinical 151 83 83 33 44 22 30 35 33 
Clinical Lab 44 81 82 19 26 4 7 29 25 
Endocrine 35 82 83 13 20 15 20 29 25 
Metabolite 224 82 82 - - - - - - 
Protein 96 82 80 13 20 19 20 - - 
miRNA 43 71 74 - - 19 21 - - 
DNA 
Methylation 

429248 81 82 15 22 6 4 13 8 

mRNA 50599 76 80 - - - - - - 
SNP 557423 56 67 1 5 6 11 N/A N/A 
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We believe that the blood is a rich resource for disease biomarkers in that it is the lifeline and one of the 
major communication channels for all cells in the body.  In addition, it is easily accessible.  A number of 
blood protein-based disease markers have been discovered and are used in clinics. For example, PSA 
levels in blood have been routinely used for prostate cancer detection [4] and blood troponin levels for 
heart diseases [5].   
Besides proteins and peptides, RNA, especially microRNA (miRNA), a group of small regulatory RNAs, 
have recently been detected in circulation [6-9]. A portion of these miRNAs is packaged in lipid vesicles 
such as exosomes released by cells.  Exosomes are vesicles that originate from multi-vesicle bodies in the 
cells and contain different macromolecules from the originating cell. Recent studies have demonstrated 
that exosomes in circulation can interact with or be taken up by cells where they produce functional 
effects. These findings suggest that exosomes may participate in the cell-cell communication network 
[10-13]. Therefore, disease conditions may affect the spectrum of blood proteins, miRNAs, and exosomal 
content. We hypothesized that PTSD will affect the spectrum of protein and RNA in plasma and 
exosomes. Using global profiling technologies, we will be able to identify PTSD-associated proteins and 
RNAs in circulation. These molecules can be used as biomarkers to detect and stratify patients with 
PTSD.   
In addition to peptides and miRNA, genetic and epigenetic signals may contain signals of risk or 
resilience. Previous evidence suggests genetic risk of PTSD exists, though the specific links and 
connections to other comorbid disorders are still unclear [14]. Recently, a few single nucleotide 
polymorphisms (SNPs) were identified to be significantly associated with PTSD risk [15-16], and may 
provide insights into functional changes occurring during PTSD development and progression. Beyond 
genetics, epigenetic changes, specifically DNA methylation, may indicate signals of acute or chronic 
stress [17]. These epigenetic changes can occur during and after trauma exposure, resulting in altered 
regulation of gene expression.  
Larger macromolecules may also play a role in identifying molecular and cellular signals of PTSD. 
Genetic and epigenetic changes may propagate through transcription and translation via altered 
regulation, resulting in changes in larger molecular components, including metabolites, cytokines, and 
endocrine signals. Increased cellular aging, based on measured telomere length, has been reported in 
combat veterans with PTSD [18-19]. Other metabolism changes, including mitochondrial dysfunction and 
changes in oxidative stress have been reported in PTSD and other neuropsychiatric disorders including 
schizophrenia and depression [20-21]. By integrating data from genetics to more complex 
macromolecules, greater insight can be gained connecting risk, resilience and progression of PTSD. 
The proteogenomic core at ISB and the bioinformatics and modeling core at Harvard are part of the multi-
omics effort for the overall Systems Biology of PTSD Consortium with a goal to understand the disease, 
and to identify and validate PTSD diagnostic markers. Working with Dr. Marmar at NYU Langone 
Medical Center and Dr. Jett at the U.S. Army Center for Environmental Health Research, ISB’s 
proteogenomic core conducted comprehensive analyses on the plasma proteins and RNAs and the 
corresponding exosomal RNA from samples obtained from male OIF/OEF (Operation Iraqi 
Freedom/Operation Enduring Freedom) veterans with or without PTSD.  We identified a set panel of 
proteins and miRNAs blood biomarker candidates that showed good performance to diagnose PTSD. 
With the finding, we propose to further validate the panel with different cohorts of patients and expand 
the initial male study to refine the PTSD blood diagnostic panel already identified.  
The bioinformatics and modeling core at Harvard develops and applies machine learning, statistics, and 
dynamic modeling to integrate the multi-omic PTSD datasets in order to: (1) identify robust biomarker 
panels for PTSD diagnosis from single ‘omic and multi-omic datasets, (2) characterize and model the 
disease mechanism leading to observable phenotypes, (3) explain heterogeneity in PTSD subjects based 
on novel disease subtypes, stages of progression, or genetic risk groups, and (4) predict potential 
therapeutic targets.  
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2. Analysis of emerging disease signals and characterization of PTSD biology 

2.1 Genome wide association study analysis 
 
Population-Specific and Trans-Ancestry Variants Associated with PTSD Severity 
 
The influence of genetic factors on PTSD resilience and prognosis has long been recognized. Efforts to 
map the genetic architecture of PTSD primarily include two major approaches. Early on, candidate-gene 
studies investigated relationships between disease phenotypes and polymorphisms on targeted genes of 
interest chosen based on some biological hypothesis. Later, with the advent of the genomic era and 
availability of SNP arrays, a few genome-wide association studies (GWAS) were carried out to identify 
genetic variants that are associated with PTSD onset and severity in a hypothesis-neutral manner.  
However, perhaps alarmingly, findings from candidate-gene studies are overall disparate from significant 
GWAS hits. This lack of overlap has been attributed to various technical challenges. On one hand, the 
biology of PTSD is too little understood to guide a successful and reliable hypothesis-driven approach 
(candidate gene studies); on the other hand, hypothesis-neutral (data-driven) approaches are still 
underpowered because they require a large sample size to have a reliably generalizable result. 
Here we investigate variants on genes and intergenic loci implicated in previous GWAS and candidate-
gene studies. Our dataset is carefully chosen to involve individuals with extreme PTSD severity score 
[22]. This has primarily three advantages. First, it minimizes inadvertent misdiagnosis. Second, it 
enhances statistical power. Third, the biological distinction is likely to be more pronounced between the 
extreme cases.  
 
Genes and intergenic loci from previous PTSD genetic studies 
We collected variants located on genes of interest from UCSC Genome Browser (GRCh37/hg19 
Assembly) (https://genome.ucsc.edu/). These genes include those previously studied on candidate gene 
studies [23-24]: ADCYAP1, ADCYAP1R1, ANK3, ANKK1, APOE, BDNF, CAT, CHRNA5, CNR1, 
COMT, CRHR1, DBH, DRD2, DRD4, DTNBP1, FKBP5, GABRA2, HTR2A, KPNA3, MAOB, 
NOS1AP, NPY, NR3C1, PRKCA, RGS2, SLC18A2, SLC6A3, SLC6A4, SRD5A2, STMN1, TPH2, and 
WWC1. Additional genes implicated in previous GWAS studies include: PRTFDC1 (rs6482463) [25], 
lincRNA AC068718.1 (rs10170218) [26], RORA (rs8042149) [27], TLL1 (rs406001) [28], ANKRD55 
(rs159572) and ZNF626 (rs11085374) [29]. 
 
Dataset and Statistical Analysis 
Our genotype data consists of 147 samples [22]. The initial Illumina OmniExpress Beadchip measures 
730,493 SNPs. 557,423 SNPs, including 918 SNPs on the genes of interest, on 147 samples survived the 
quality-control steps (minimum threshold for minor allele frequency of 0.01, maximum SNP missingness 
rate of 0.05, maximum individual missingness rate of 0.05, and Hardy-Weinberg equilibrium p-value of 
1e-5). Linear regression is performed on current CAPS as the response variable and minor-allele 
frequency, sex, and three principal components as explanatory variables. This analysis is done on PLINK 
[30].  
We found a nominal significant (p<0.01) association between eight variants on six genes (Table 2.1). 
Interestingly, two SNPs on a gene previously implicated in a GWA study, TLL1, and two intronic SNPs 
on BDNF locus passed nominal significant threshold (Figure 2.1). 
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Figure 2.1 Manhattan plot of association between PTSD severity and variants on autosomal 
chromosomes. SNPs on selected genes are shown in red. The horizontal blue line represents a nominal 
significance level (p=0.01). 
 
Table 2.1 SNPs with statistically significant association (p<0.01) with PTSD severity. 
CHR SNP Gene Function BP BETA p-value 

4 rs7696087 TLL1 intron variant 1.67E+08 14.85 0.002115 
4 rs4691229 TLL1 intron variant 1.67E+08 12.09 0.006409 
5 rs1042098 SLC6A3 3 prime UTR variant 1394815 9.928 0.003887 

10 rs10821659 ANK3 intron variant 61793424 10.78 0.001999 
11 rs12291063 BDNF intron variant 27694101 16.74 9.08E-05 
11 rs7124442 BDNF intron variant 27677041 -10.43 0.004098 
13 rs1923885 HTR2A intron variant 47423086 -10.9 0.002149 
17 rs17771145 PRKCA intron variant 64453228 -15.22 0.003171 

 
 
We further investigated the relationship between genotype of the top SNP (rs12291063) and PTSD 
severity. We performed the analysis for the three major ancestry groups separately (Hispanics, non-
Hispanic Whites and non-Hispanic Blacks) and all samples together (Figure 2.2). Our preliminary 
analysis suggests the genetic architecture of PTSD has population specific components, reflective of the 
very heterogeneous nature of the disorder. 
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Figure 2.2 Boxplot showing relationship between an intronic SNP of BDNF (rs12291063) and PTSD 
severity, based on current CAPS total. Combined analysis of all ancestries showed a nominally 
significant association, p<0.01 (top right). Individual ancestry group analyses showed a nominally 
significant association only in the Hispanic group. 
 
An appealing functional SNP on BDNF, rs6265 (Val66Met), is widely studied in several psychiatric 
disorders.  On a finding on 42/419 case/control sample from the US Army Special Operations soldiers 
deployed to OEF/OIF, a recent study reported probable-PTSD is associated with a BDNF functional 
polymorphism rs6265 (Val66Met) and higher plasma concentration [31]. In our data we found a 
statistically significant relationship between BDNF blood concentration (Figure 2.3) and PTSD severity, 
but did not find a significant association between rs6265 genotypes and PTSD diagnosis nor severity.  

 
Figure 2.3 Scatter plot showing a positive correlation between BDNF blood concentration and 
PTSD severity. 
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Why only Hispanics seem to be susceptible by this polymorphism on BDNF needs to be further 
investigated. Particularly in light of the fact that several studies reported Hispanics have markedly higher 
risk level of developing PTSD and experience more severe symptoms compared to non-Hispanic Whites 
and non-Hispanic Blacks. These studies include military and civilian cohorts: in OEF/OIF veterans [32], 
in Vietnam War veterans [33], in police officers [34], after a terrorist attack [35], and after a natural 
disaster like a hurricane [36].  
We plan to further investigate the following issues: (1) eQTL and mQTL analysis of identified SNPs, (2) 
genetic influence on metabolic profile and other intermediate molecular phenotypes (this kind of analysis 
helps fill in the mechanistic detail in between variants associated with disease phenotypes), (3) 
comparison of self-reported ethnicity/race and predictions from genetic admixture models, (4) replication 
study on publicly available dataset (dbGaP Study Accession: phs000864.v1.p1), and (5) fine mapping of 
local LD structure in the three ancestral subgroups. 
 
 
Expression quantitative trait loci (eQTL) analysis to investigate the effects of DNA variants on gene 
expression and detecting their possible roles in developing PTSD 
 
These top significant SNPs are not uniformly distributed across chromosomes. The histogram in Figure 
2.4 demonstrates that the obtained SNPs are densely located in chromosomes 1 and 2.  
We then tested if these SNPs are in Linkage Disequilibrium (LD). For each SNP, a 500 kb interval and a 
correlation threshold of 0.7 was considered. The SNPs in LD were then mapped to the genes hosting these 
SNPs (or the closest gene). These SNPs were almost all located inside a set of 141 unique genes which 
are mostly located in chromosomes 10 and 1 (Figure 2.5). Moreover, we tested to see if any of these 
SNPs on each unique chromosome are in LD with each other. Chromosome 4 contains the largest SNP 
pairs in LD where 80 SNPs have correlation coefficient over 0.7. Figure 2.6 represents the pairwise 
distances in Mb among the discovered SNPs across different chromosomes. Chromosome 4 contains 80 
pairwise SNPs in LD, some of which are quite distant from each other, up to 0.4 Mb. Other chromosomes 
have fewer numbers of SNPs in LD, with LD pairs fairly close along the chromosome. 
 
 

Figure 2.4 Distribution of the associated SNPs across chromosomes. 
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Figure 2.5 Distribution of the associated genes across chromosomes from GWAS. 

 
According to Figure 2.7, except for chromosomes 6 and 9, the pairwise correlations between the detected 
SNPs on the other chromosomes are over 0.75. This is an indication of interconnection between the 
detected SNPs on each chromosome and reflects the fact that these SNPs mostly refer to a particular 
region on each chromosome. For instance, we showed that the number of the detected SNPs on 
chromosome 4 in LD is the largest among the entire detected SNPs and the median distance between the 
SNPs is 750 kb on chromosome 4 (the LD population is extracted from the hg19/1000 genome project 
results). The 33 SNPs located on chromosome 4 have 40 distinct pairs in LD with correlation over 0.6. 
The first three correlation quantiles are over 0.67. As an example, Figure 2.8 shows the locations of the 
detected SNPs on chromosome 4, based on their positions from 33 Mb to 50 Mb. Tightness of a group of 
SNPs is illustrated around 34 Mb, which is located in a non-coding region. SNP rs1435389 (p=2.77E-05) 
is located in a dense coding region but is not located inside a particular gene or in the 500 kb vicinity of 
other genes. However, rs10017276 (on the right hand side) is located inside CORIN. 
 

Figure 2.6 Distribution of pairwise distances between discovered SNPs across chromosomes. 
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Figure 2.7 Pairwise correlation between the discovered SNPs across chromosomes. 

 

 
Figure 2.8 Location of detected SNPs on chromosome 4 from 33 to 50 Mb. 
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eQTL analysis was conducted using Matrix eQTL [37]. To do so, first the non-shared samples between 
the original SNP data and the mRNA data were removed. In total, 51 cases and 64 controls remained, 
which were all males. Then, genotypes were coded as a single allele dosage number to be used in Matrix 
eQTL. We have used Agilent platform to prepare the mRNA gene expression data. This dataset contains 
46155 probes. 29005 probes were residing in non-coding regions and were removed from further analysis. 
17150 remaining probes were located in coding regions. Linear additive models were used to test the 
interactions among the quantitative loci and expression of the genes. We did not limit our analysis to the 
gene level but performed interaction between the loci and the entire probes. mRNA data was batch 
corrected using the frozen Surrogate Variable Analysis (fSVA) method while controlling for Body Mass 
Index (BMI) and age. The two sided t-test was conducted to check which probes were differentially 
expressed between cases and controls. The distribution of the differentially expressed probes based on 
their p-values are depicted in Figure 2.9. In total, 82 probes were highly differentially expressed (p<0.01). 
 
 

Figure 2.9 Histogram of the mRNA probe p-values between cases and controls. 

   Figure 2.10 Histogram of cis and trans acting regulatory loci.  
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We have checked the cis and trans-acting eQTLs associated with expression of the 17150 gene expression 
probes. A 500 kb distance was taken as the look up window for cis-acting eQTLs. 965 cis-acting and 588 
trans-acting eQTLs having p-values less than 0.001 were detected. Both cis and trans-regulatory eQTLs 
were mostly distributed on chromosome 6. The overall distribution of the detected eQTLs are represented 
in Figure 2.10.  
The detected eQTLs correspond to 229 unique probes, corresponding to 221 unique genes. In order to 
further analyze the detected cis-acting eQTLs, we concentrated on the top eQTLs (p<1E-9). These eQTLs 
correspond to 48 expression probes mapped to 47 unique genes. We then performed disease association 
analysis. Three main neurologically-related disorders enriched with these genes are neural tube defects, 
shock disease, and nervous system impairment. For each single detected probe, we have extracted the 
corresponding SNPs along with the chromosomal location and the association p-value between the SNP 
and the probe. These three neurological-disorders associated chromosomal locations are presented in 
Tables 2.2-2.4. 
 
 

Table 2.2 eQTLs highly associated with the transcripts and their corresponding chromosomal 
location related to Shock. 

Gene SNP Probe Association p-value Location 
FKBP1A rs6041750 A_23_P397238 0.000536 20p13 
CRYBB2 rs9612371 A_23_P425066 0.000189 22q11.23 

rs107017 A_23_P425066 0.000646 
rs16997431 A_23_P425066 0.000674 
rs6003692 A_23_P425066 0.000519 

PRDX2 rs1205170 A_24_P168416 0.000792 19p13.13 
AHSA2 rs4671401 A_23_P372467 5.48E-06 2p15 

rs2290324 A_23_P372467 1.53E-05 
rs1809028 A_23_P372467 2.81E-05 

SRI rs1063964 A_23_P59718 1.25E-12 7q21.12 
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Table 2.3 eQTLs highly associated with the transcripts and their corresponding chromosomal 
location related nervous system impairments. 

Gene SNP Probe Association p-value Location 
GALC rs378816 A_23_P25964 6.91E-07 7q36.1 

rs405567 A_23_P25964 1.87E-06 
rs3213917 A_23_P25964 1.94E-05 
rs398607 A_23_P25964 6.91E-07 

PEX6 rs9381225 A_23_P42144 4.35E-06 6p21.1 
rs2234185 A_23_P42144 4.44E-06 
rs2007950 A_23_P42144 5.76E-06 
rs6941212 A_23_P42144 0.000162 

rs13199873 A_23_P42144 0.000251 
rs1129187 A_23_P42144 0.000279 
rs3763236 A_23_P42144 0.000675 
rs2395943 A_23_P42144 1.66E-09 

PPT1 rs10889147 A_23_P62659 0.00053 1p34.2 
VAPB rs2268920 A_23_P91293 0.000412 20q13.32 

rs9679935 A_23_P91293 3.07E-05 
IGHMBP2 rs546382 A_23_P393713 2.92E-06 11q13.2 

rs660614 A_23_P393713 1.42E-05 
rs629426 A_23_P393713 1.42E-05 
rs636049 A_23_P393713 3.02E-05 
rs619727 A_23_P393713 5.88E-05 
rs604524 A_23_P393713 0.000627 
rs622082 A_23_P393713 2.92E-06 

SUMF1 rs4685744 A_23_P69242 0.000961 3p26.2 
LMNA rs6682411 A_23_P34835 0.000357 1q22 

rs6427085 A_23_P34835 0.000589 
rs11264336 A_23_P34835 0.000168 

MFN2 rs2295281 A_23_P126135 3.73E-05 1p36.22 
MTRR rs162036 A_23_P252211 3.36E-09 5p15.31 

rs12347 A_23_P252211 3.36E-09 
rs9332 A_23_P252211 3.36E-09 

rs2640658 A_23_P252211 3.89E-07 
rs10380 A_23_P252211 1.30E-05 

rs161871 A_23_P252211 1.31E-05 
rs16879410 A_23_P252211 3.19E-05 
rs3733784 A_23_P252211 6.34E-05 

rs16879305 A_23_P252211 6.74E-05 
rs1046014 A_23_P252211 0.000730 
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Table 2.4 cis-eQTLs highly associated with the transcripts and their corresponding chromosomal 
location related to neural tube defects. 

Gene SNP Probe Association p-value Location 
LRRC6 rs1048490 A_23_P112004 1.08E-12 8q24.22 

rs3909640 A_23_P112004 1.25E-12 
rs10216529 A_23_P112004 6.72E-12 
rs7841637 A_23_P112004 1.08E-07 
rs853308 A_23_P112004 4.43E-06 

rs2739024 A_23_P112004 5.58E-06 
rs2280871 A_23_P112004 7.67E-06 
rs3843562 A_23_P112004 1.11E-05 
rs4480107 A_23_P112004 2.46E-05 
rs853321 A_23_P112004 4.91E-05 

rs2052701 A_23_P112004 5.15E-05 
rs1469263 A_23_P112004 0.000116 

rs11996730 A_23_P112004 0.000139 
rs4736611 A_23_P112004 0.000162 
rs2272681 A_23_P112004 0.000198 
rs2293979 A_23_P112004 0.000198 
rs7004199 A_23_P112004 0.000627 

rs11988034 A_23_P112004 1.08E-12 
MTRR rs12347 A_23_P252211 3.36E-09 5p15.31 

rs9332 A_23_P252211 3.36E-09 
rs2640658 A_23_P252211 3.89E-07 

rs10380 A_23_P252211 1.30E-05 
rs161871 A_23_P252211 1.31E-05 

rs16879410 A_23_P252211 3.19E-05 
rs3733784 A_23_P252211 6.34E-05 

rs16879305 A_23_P252211 6.74E-05 
rs1046014 A_23_P252211 0.000730 

 
 
2.2 Analysis of recalled PTSD subjects for markers and predictors of symptom changes 
 
35 and 33 of the 83 PTSD and 83 Control subjects from the Original Biomarkers Study returned for 
follow-up evaluation approximately 2-3 years following their original enrollment in the study. Many of 
the PTSD subjects experienced a significant change in symptoms over this period. We have used the 
available molecular and clinical data from these two time points to identify molecular signals associated 
with symptom change, or signals which can predict future symptom change. A summary of the available 
recall data is shown in Table 2.5. 
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Table 2.5 Summary of available clinical and molecular data for recalled subjects at Time 1 (T1) and 
Time 2 (T2). 

 # of PTSD Subjects 
from T1 

# of Control 
Subjects from T1 

# of PTSD Subjects 
from T2 

# of Control 
Subjects from T2 

Clinical 35 33 35 33 
CLIA Lab 34 33 29 25 
Endocrine 34 33 29 25 

DNA 
Methylation 

33 33 14 8 

Metabolite 35 33 0 0 
Protein 34 32 0 0 

  
 
For data types with molecular data at both T1 and T2 (endocrine, CLIA Lab), we searched for features 
that were associated with changes in symptoms. Specifically, we identified variables whose change 
between T1 and T2 was correlated with the change in CAPS Total Current scores between the same time 
points. One endocrine marker, 5-alpha-reductase, and three CLIA Lab markers were significantly 
correlated with ΔCAPS (p<0.01), indicating that they could be used to track symptom recovery in PTSD 
subjects. Additionally, none of the CLIA Lab markers correlated with symptom change were previously 
identified as biomarkers of PTSD (p>0.01 in 83-83 Discovery cohort). Based on this cohort, these 
markers cannot be used to predict the magnitude of PTSD symptoms (or distinguish PTSD from 
Controls), but can be used to determine symptom changes over time. 5-alpha-reductase was also 
correlated with symptoms changes, but was also significantly different between PTSD and Control 
subjects at T1. However, though a significant difference in means exists, 5-alpha-reductase does not 
perform well as a diagnostic biomarker in the 83-83 training dataset. Figure 2.11 illustrates the findings 
associated with 5-alpha-reductase. 

 
Figure 2.11 Overview of 5-alpha-reductase (athftof) signal in recalled subjects. Left: 5-alpha-
reductase levels at T1 are correlated with ΔCAPS between T1 and T2 (p<0.01,FDR<0.1). Right: 5-alpha-
reductase is also differentially expressed between Control (red) and PTSD (blue) subjects at T1 (p<0.01), 
though it does not perform well as a diagnostic marker (max AUC fitted on training data: 0.528). 



16	
	

 
In molecular data types without the completed recall subjects at T2, we identified molecular markers at 
T1 that can predict future symptom change. Table 2.6 summarizes the results of this analysis for all 
available data types. An example result from the metabolite dataset is shown in Figure 2.12, illustrating 
the correlation between T1 C-glycosyltryptophan levels and future CAPS changes. Similar to the CLIA 
lab results, C-glycosyltryptophan is not differentially expressed (p>0.01) between PTSD and Controls at 
T1, indicating is not able to distinguish the magnitude of PTSD symptoms, but instead is predictive of 
future symptom changes. 
 
Table 2.6 Summary of significant predictive features. 

Data Type # of features 
considered 

# of features predictive of 
future ΔCAPS (p<0.01) 

# of features predictive of future 
ΔCAPS (FDR<0.01) 

DNA 
Methylation 

429948 11514 6 

mRNA 50599 324 0 
Metabolite 416 4 1 

Protein 96 0 0 
miRNA 43 0 0 

Endocrine 35 1 1 
CLIA Lab 44 0 0 

 

 
Figure 2.12 Overview of C-glycosyltryptophan signals in recalled subjects. Left: Normalized levels of 
C-glycosyltryptophan are correlated with ΔCAPS between T1 and T2 (p<0.01 and FDR<0.1). Right: C-
glycosyltryptophan levels are not significantly different between Controls (red) and PTSD (blue) at T1 
(p>0.01).  
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2.3 Application of Weighted Gene Correlation Network Analysis to PTSD DNA Methylation 
dataset 
 
Weighted Gene Correlation Network Analysis (WGCNA) is an unsupervised framework for discovering 
networks of genes, modules, which are co-expressed but not necessary differentially expressed within a 
cohort [38].  We applied WGCNA to the 81/82 group (group 1) and validated separately on the 40/29 
group (group 2) of PTSD subjects, performing functional enrichment analysis and module-trait 
association on each.  The output of WGCNA on DNA methylation data is a set of modules where all of 
the CpG sites within the module are co-expressed.  Due to the large size of the probes, we focus only on 
the differentially methylated set of CpG sites across the modules.  From this, we observe several potential 
biomarkers and important pathways. 
 
We show the discovered CpG sites and their respective module grouping in Table 2.7 for group 1.  
Functional enrichment analysis of the discovered modules using DAVID [39-40] and WebGestalt [41] are 
shown in Figure 2.13 for both groups. Of interest here are the olfactory transduction and taste 
transduction pathways as well as several neurological impairments, which are reproduced in both the 
81/82 group and the 40/29 group.  The independent identification of these pathways in both groups hint at 
the possible importance of these to PTSD.  In addition, this is in accordance with a study by Chen et al. 
[42] that finds 8 olfactory related genes to be upregulated with PTSD. 
 
Table 2.7 Differentially Methylated CpG sites in each module. We focus our analysis on looking at the 
differentially methylated CpG within each module as well as the gene with which they are associated. 

Module p-value CpG Gene Module p-value CpG Gene 
1 0.000749 cg26613312 RNF152 1 0.00816 cg26306869 S100A3 
1 0.001142 cg27065979 NEK3 1 0.008743 cg24925163 SFT2D3 
1 0.001614 cg24441911 RBP5 1 0.00963 cg27327475 WHSC1 
1 0.002 cg24424217 ZNF511 1 0.009791 cg24866407 SLC17A9 
1 0.00259 cg19287591 ULK3 1 0.009906 cg19869608 ANKRD52 
1 0.002606 cg27638115 MALL 1 0.009954 cg18479961 MIR671 
1 0.002643 cg24905370 NSA2 2 0.000976 cg27422507 DSG2 
1 0.002662 cg23501292 LIG1 2 0.006762 cg21898527 TMEM30C 
1 0.002994 cg16320885 LCE5A 2 0.007414 cg18646864 ORC1L 
1 0.003446 cg25141818 SLC26A9 2 0.007594 cg25422051 C11orf68 
1 0.003687 cg26010099 S100A14 2 0.008507 cg27030081 ODF1 
1 0.004063 cg18146398 CCR1 3 0.00119 cg27259271 SDCCAG8 
1 0.004336 cg26722179 TMEM175 3 0.001612 cg21169285 MAPK9 
1 0.004681 cg26514117 MIR181D 3 0.002442 cg27586378 SULT2B1 
1 0.00505 cg18393023 SERPIND1 3 0.002554 cg26978776 CUZD1 
1 0.00511 cg22289360 GCNT1 3 0.003714 cg27533700 EXOG 
1 0.005412 cg22981296 RASD1 3 0.00536 cg26178664 CALML3 
1 0.005487 cg20630690 ZGLP1 3 0.007625 cg23959009 ENOPH1 
1 0.005586 cg27570233 FOXK2 4 0.000898 cg24254937 E2F2 
1 0.005745 cg20388168 CUL9 4 0.007218 cg26591162 SRL 
1 0.005985 cg25781926 MAPRE3 4 0.008304 cg14219236 SNORD114-

22 
1 0.006222 cg22923050 DDX49 4 0.009671 cg20948262 FRRS1 
1 0.006402 cg25635303 DHX33 5 0.001199 cg26736540 TFAP2C 
1 0.006526 cg26539468 CCDC111 6 0.000231 cg21316772 B4GALT1 
1 0.007531 cg03569637 LOC100233209 6 0.006741 cg26227957 KIAA0090 
1 0.007684 cg26218982 LACRT 7 0.000989 cg26589669 GSTO2 
1 0.007858 cg23686278 XRRA1 7 0.005963 cg10432569 MIR196A1 
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Figure 2.13 Activated Pathways of significant module in both groups. (a) Group 1 (b) Group 2. 
Functional enrichment analysis on the modules for both groups shows some consistency, particularly in 
olfactory transduction and taste transduction as well as a few neurological impairments. 
 
 
 
To analyze the relevance of these modules to clinical traits and to further pinpoint specific important gene 
candidates, we calculate and show the correlation of each module to the clinical traits in Figure 2.14.  Few 
of these modules are statistically significant to the clinical traits. However, if we look at the correlation 
between the differentially methylated genes from Table 2.7, we see stronger values.  These results are 
shown in shown in Figure 2.15 and serve to validate the possible importance of some of these 
differentially methylated, module genes.  Of note are the genes LCE5A, C11orf68, CALML3, SRL, and 
MIR196A1, but also highly correlated with clinical symptoms. 
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Figure 2.14 Correlations between each module and the clinical traits. (a) Group 1 (b) Group 2.  
Correlation was found by calculating the first module eigenvector and correlating it with the clinical 
values.  Only a few modules are significantly correlated. 

(a) 

(b) 
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3. Application and development of classification and biomarker identification tools to 
finalize biomarker panels in single ‘omic datasets 

3.1 Data-driven biomarker discovery and classification using soft computing techniques 
 
In this work, we have extended the soft computing approach proposed in [43] by increasing the 
computational robustness and noise resistance abilities of the algorithm by employing Interval Type-2 
(IT2) fuzzy sets instead of ordinary fuzzy membership functions. To do so, we have added a type-
reduction module to the algorithm in order to adapt the type-2 fuzzy part with the other steps of the 
algorithm. The general structure of IT2 fuzzy systems is provided in Figure 3.1. The overall pipeline of 
this approach is represented in Figure 3.2. 

 
Figure 2.15 Correlations between the differentially methylated genes in Table 2.7 and the clinical 
traits. TC (Total Correlation) is the sum of the correlations for each gene and P is the -Log10(p-value) 
of the gene between cases and controls.  Most of these genes are strongly correlated with at least 2 
clinical traits, indicating a possibility of importance in PTSD. 
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 Figure 3.1 A schematic view of IT2 fuzzy systems.  
 
 

 
Figure 3.2 Flowchart of the extended soft computing classification and biomarker discovery 
approach. 
 
 
Application of soft computing techniques to PTSD mRNA dataset 

 
We have implemented this algorithm on the Agilent 52-52 mRNA data. For comparison, we have also 
run Nearest Shrunken Centroids (NSC) classification and Logistic Regression with L1-regularization. 
The computational performance metrics along with the identified biomarkers are summarized in Tables 
3.1-3.2. 
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Table 3.1. Classification performance measures for 52-52 mRNA data using extended fuzzy rule-
based system, Nearest Shrunken Centroids and L1-Logistic Regression. 
AUC: Area Under the ROC Curve; ER: Error Rate; MCC: Matthew Correlation Coefficient; MSPE: 
Mean Squared Predicted Error; Youden: Youden Index; PPV: Positive Predictive Value; NPV: Negative 
Predictive Value; TPR: True Positive Rate; FPR: False Positive Rate. 

Metric Nearest Shrunken 
Centroids 

Logistic Regression with L1-
regularization 

Fuzzy rule-based 
system 

AUC 0.599 0.543 0.598 
ER 0.514 0.405 0.404 

MCC -0.019 0.195 0.197 
MSPE 0.248 0.753 0.760 

Youden 0.289 0.240 0.239 
PPV 0.500 0.571 0.591 
NPV 0.480 0.625 0.610 
TPR 0.316 0.667 0.685 
FPR 0.333 0.474 0.430 

 

 
 
 
Table 3.2 Identified mRNA biomarkers using the fuzzy rule-based approach. 

ID Symbol Function p-value FDR 
A_24_P135444 AMFR Colorectal cancer-related gene. 0.00001

6 
0.9997
0 

A_23_P208013 ZNF407 Causes syndromic intellectual disability. 0.00046
3 

0.9997
0 

A_33_P3356877 OR13C3 Olfactory receptors to initiate neural response that 
triggers the perception of smell. 

0.00130
9 

0.9997
0 

A_33_P3401295 CRCT1 The encoded protein may be involved in 
amyotrophic lateral sclerosis and Parkinson's 
disease. 

0.00189 0.9997
0 

A_24_P90097 ADD3 Disease associated is dyscalculia A learning 
disability such difficulties as learning math concepts 

0.00117
4 

0.9997
0 

A_33_P3280721 WLS Skin related disorders. 0.00136
1 

0.9997
0 

A_33_P3221665 KIF21B Inflammatory bowel disease. 0.00109
4 

0.9997
0 

A_23_P424900 C1orf88 to control cilia retraction as well as the liberation 
and duplication of the basal body/centrosome.  

0.00102
9 

0.9997
0 

A_23_P105002 ROM1 Diseases associated with ROM1 include retinitis 
pigmentosa 7 and digenic and rom1-related retinitis 
pigmentosa. 

0.00061
9 

0.9997
0 

A_24_P115507 SARDH Diseases associated with SARDH include 
sarcosinemia and dimethylglycine dehydrogenase 
deficiency. 

0.00055
8 

0.9997
0 

A_33_P3272260 SIRPB2 Lymphoma-related gene. 0.00018
3 

0.9997
0 

A_33_P3295415 ZBTB3 Colorectal cancer-related gene. 0.00163 0.9997
0 

A_23_P61881 ARIH2 Can differentiate in the bone marrow into 
granulocytes. 

0.00183
1 

0.9997
0 
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Application of soft computing techniques to PTSD DNA Methylation dataset 
 
Since the methylation dataset is very large, we decided to study subsets of probes in order to reduce the 
dimension of the search space. The choice of probes is motivated by biology of the disorder. The subset 
used were: 1) only the promoter region probes, 2) probes corresponding to genes that are expressed in 
brain and found in blood, and 3) promoter region probes of the genes from subset two. The second subset 
was curated by using the genes assayed in the Allen brain study for the adult and developing human brain 
[44-47]. Including the original dataset, we analyzed a total of four datasets (three subsets plus the full 
dataset). These are referred to as Promoter Only, Brain-All, Brian-Promoter and All, respectively.  The 
available validation dataset consisted of 31 subjects in each PTSD and control groups. A subset of the 
validation data was separated to use for integration of various panels obtained by different methods. The 
validation performance was then computed on the remaining subset of validation data. 
Using the extended fuzzy rule-based method mentioned above, we have implemented it on four splits of 
the Agilent 52-52 DNA methylation data: Promoter Only, Brain-All, Brain-Promoter, and All. The 
computational measures along with the identified biomarkers are represented in Tables 3.3-3.7. 

 
 

Table 3.3 Extended fuzzy rule-based classification performance measures. Classification 
performance metrics on Agilent DNA methylation data. Predicted/Cross-validated performance measures 
(“P”) on the 52-52 cohort, and actual/validation performance measures (“A”) on 31-31 cohort. 

Metric Blood (All) Blood (Promoter) Brain + Blood (All) Brain + Blood 
(Promoter ) 

 P A P A P A P A 
AUC 0.6203± 0.1098 0.600 0.635 ± 0.1006 0.600 0.6301 ± 0.093 0.601 0.604 ± 0.1312 0.588 
ER 0.40 ± 0.0872 0.439 0.396 ± 0.1008 0.453 0.389 ± 0.1001 0.408 0.398 ± 0.0951 0.422 

PPV 0.603 ± 0.1237 0.532 0.599 ± 0.0946 0.551 0.612 ± 0.180 0.575 0.625 ± 0.1263 0.566 
NPV 0.608 ± 0.1011 0.510 0.608 ± 0.1105 0.604 0.610 ± 0.1183 0.558 0.610 ± 0.1170 0.573 
TPR 0.591 ± 0.0947 0.578 0.581 ± 0.1089 0.591 0.590 ± 0.1571 0.601 0.595 ± 0.1222 0.645 
FPR 0.393 ± 0.0729 0.506 0.377 ± 0.089 0.519 0.374 ± 0.091 0.471 0.355 ± 0.0821 0.513 
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Table 3.4 Identified DNA Methylation biomarkers from All probes. 
Probe ID Gene Name p-value 

A_17_P16992190 KPNB1 2.64E-08 
A_17_P15229454 WDR43 8.15E-08 
A_17_P15441405 WNT5A 1.60E-07 
A_17_P08336156 COL2A1 2.42E-07 
A_17_P15491932 KY 3.79E-07 
A_17_P15037255 CDC42 3.93E-07 
A_17_P16442560 PACSIN3 4.20E-07 
A_17_P16836061 HBA2 6.16E-07 
A_17_P30223816 SKOR1 6.26E-07 
A_17_P15113548 PDE4DIP 8.23E-07 
A_17_P32480043 ZC4H2 9.35E-07 
A_17_P16380506 SH3PXD2A 1.03E-06 
A_17_P15051080 MACF1 1.15E-06 
A_17_P16918077 GAN 1.64E-06 
A_17_P32147249 NEFH 1.64E-06 
A_17_P32154566 SELM 1.73E-06 
A_17_P16562934 LRP1 1.79E-06 
A_17_P16378261 LZTS2 1.85E-06 
A_17_P15100937 LRIG2 1.89E-06 
A_17_P02004261 KIF1A 1.95E-06 
A_17_P22026036 FAM134A 2.49E-06 
A_17_P09328713 DHRS7 2.49E-06 
A_17_P16148119 OPLAH 2.50E-06 
A_17_P07596187 EFCAB4A 3.42E-06 
A_17_P16385788 CASP7 3.44E-06 
A_17_P15281121 MAL 3.90E-06 
A_17_P15554253 STIM2 4.23E-06 
A_17_P16880097 TGFB1I1 4.30E-06 
A_17_P15048443 KIAA0319L 4.97E-06 
A_17_P27346623 RNU6ATAC 6.37E-06 
A_17_P09929677 RUNDC2A 1.29E-05 
A_17_P16877882 MAPK3 1.39E-05 
A_17_P31564227 NUDT19 1.41E-05 
A_17_P16462970 OVOL1 1.44E-05 
A_17_P16836091 HBA1 1.45E-05 
A_17_P16424413 MYOD1 1.60E-05 
A_17_P06198312 SLCO5A1 1.64E-05 
A_17_P27019833 ANKRD20A2 2.63E-05 
A_17_P10947425 FFAR1 3.09E-05 
A_17_P09929677 RUNDC2A 1.29E-05 
A_17_P31564227 NUDT19 1.41E-05 
A_17_P20899867 CNIH3 1.58E-05 
A_17_P17286585 SREBF2 1.80E-05 
A_17_P30831096 WSB1 2.42E-05 
A_17_P31080544 BAHCC1 8.56E-06 
A_17_P09150998 RASA3 8.82E-06 
A_17_P25611800 MIR550A1 1.01E-05 
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Table 3.5 Identified DNA Methylation biomarkers from Brain-All probes. 
Probe ID Gene Name p-value 

A_17_P15441405 WNT5A 1.58E-07 
A_17_P08336156 COL2A1 2.55E-07 
A_17_P26986345 FANCG 2.77E-07 
A_17_P15037255 CDC42 3.98E-07 
A_17_P15055635 PLK3 4.53E-07 
A_17_P26287785 PPP3CC 6.78E-07 
A_17_P05262813 MICALL2 9.87E-07 
A_17_P32889238 DGAT1 1.06E-06 
A_17_P15051080 MACF1 1.07E-06 
A_17_P16380506 SH3PXD2A 1.26E-06 
A_17_P16079244 ENTPD4 1.68E-06 
A_17_P16918077 GAN 1.76E-06 
A_17_P02004261 KIF1A 1.87E-06 
A_17_P16562934 LRP1 1.9E-06 
A_17_P21225125 SIX2 2.07E-06 
A_17_P09736379 GLCE 2.16E-06 
A_17_P22026036 FAM134A 2.67E-06 
A_17_P29597995 PCID2 3.13E-06 
A_17_P16385788 CASP7 3.62E-06 
A_17_P15403467 STK25 4.52E-06 
A_17_P24938290 FBXO9 5.14E-06 
A_17_P06807708 GADD45G 5.77E-06 
A_17_P27457820 STAM 6.65E-06 
A_17_P15136165 KCNJ9 7.57E-06 
A_17_P21799473 DLX1 7.96E-06 
A_17_P09150998 RASA3 8.75E-06 
A_17_P00476260 NHLH2 9.43E-06 
A_17_P23466228 PPP3CA 9.49E-06 
A_17_P15500029 TSC22D2 9.75E-06 
A_17_P17172157 PLCB4 9.99E-06 
A_17_P16098330 NSMAF 1.02E-05 
A_17_P15055788 HECTD3 1.18E-05 
A_17_P20523826 TBX15 1.29E-05 
A_17_P17209335 COL9A3 1.3E-05 
A_17_P15778411 SERPINB6 1.35E-05 
A_17_P00060115 EFHD2 1.41E-05 
A_17_P16462970 OVOL1 1.42E-05 
A_17_P16877882 MAPK3 1.5E-05 
A_17_P16424413 MYOD1 1.58E-05 
A_17_P16387276 GFRA1 1.8E-05 
A_17_P15074726 USP33 1.91E-05 
A_17_P17234558 SIM2 2.41E-05 
A_17_P17213204 PCMTD2 2.54E-05 
A_17_P16555982 DDN 2.72E-05 
A_17_P16372461 TNKS2 2.87E-05 
A_17_P16785654 EIF3J 2.88E-05 
A_17_P16937597 UBE2G1 3.32E-05 
A_17_P20784489 DDX59 4.4E-05 
A_17_P17194852 DBNDD2 6.17E-05 
A_17_P16292171 DHTKD1 6.39E-05 
A_17_P16672133 SOX1 7.4E-05 
A_17_P17236438 PSMG1 7.6E-05 
A_17_P29827163 ACTN1 9.65E-05 
A_17_P01232345 UGP2 4.15E-05 
A_17_P17097970 TLE2 3.04E-05 
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Table 3.6 Identified DNA Methylation biomarkers from Brain-Promoter probes. 
Probe ID Gene Name p-value 

A_17_P26986345 FANCG 7.11E-07 
A_17_P09155719 ANG 1.37E-06 
A_17_P17028211 FASN 3.4E-06 
A_17_P09736379 GLCE 4.59E-06 
A_17_P21225125 SIX2 4.67E-06 
A_17_P10625332 MAPRE2 1.35E-05 
A_17_P23455530 EIF4E 3.23E-05 
A_17_P16387276 GFRA1 3.55E-05 
A_17_P31614741 FKRP 0.000047 
A_17_P24102370 FST 5.26E-05 
A_17_P27307280 PBX3 7.17E-05 
A_17_P16966417 TIAF1 7.35E-05 
A_17_P00777833 PPP2R5A 7.83E-05 
A_17_P20784489 DDX59 7.89E-05 
A_17_P16292171 DHTKD1 0.000106 
A_17_P17194852 DBNDD2 0.000112 
A_17_P15531898 DGKQ 0.000125 
A_17_P15693436 PLK2 0.000127 
A_17_P23676579 NR3C2 0.000205 
A_17_P16079241 ENTPD4 0.000209 
A_17_P10488594 NPTX1 0.000252 
A_17_P15740601 ACSL6 0.000282 
A_17_P16673810 MCF2L 0.000293 
A_17_P16137330 ST3GAL1 0.000358 
A_17_P16798818 DPP8 0.000433 
A_17_P16683127 TEP1 0.000499 
A_17_P15496101 CHST2 0.0005 
A_17_P16096976 PENK 0.000516 
A_17_P15834791 FAM46A 0.000523 
A_17_P17279275 MCM5 0.000528 
A_17_P10174699 FBXO31 0.000549 
A_17_P22772943 TFDP2 0.000561 
A_17_P31161966 SNRPD1 0.000259 
A_17_P29056397 DTX1 0.000306 
A_17_P17254685 DGCR14 0.000329 
A_17_P30840930 TAOK1 0.000233 
A_17_P04506430 FOXQ1 0.000201 
A_17_P15831914 COL12A1 0.000192 
A_17_P16992564 CDK5RAP3 0.000158 
A_17_P15023754 FBXO44 0.000152 
A_17_P05110439 TNFAIP3 0.000297 
A_17_P16175582 PAX5 0.00037 
A_17_P23839254 CDKN2AIP 0.000612 
A_17_P16154930 JAK2 0.000616 
A_17_P01670284 GAD1 0.000717 
A_17_P28304520 LRRC32 0.00079 
A_17_P20007295 MMP23B 0.000855 
A_17_P15043445 EPB41 0.001014 
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Table 3.7 Identified DNA Methylation biomarkers from Promoter Only probes. 
Probe ID Gene Name p-value 

A_17_P15155447 RGS2 5.74E-08 
A_17_P15441405 WNT5A 1.60E-07 
A_17_P32480043 ZC4H2 9.35E-07 
A_17_P17133179 GRAMD1A 9.85E-07 
A_17_P21278637 CCDC85A 1.22E-06 
A_17_P17028211 FASN 1.26E-06 
A_17_P02004261 KIF1A 1.95E-06 
A_17_P09736379 GLCE 2.17E-06 
A_17_P16385788 CASP7 3.44E-06 
A_17_P10625332 MAPRE2 6.39E-06 
A_17_P15142174 ATP1B1 1.06E-05 
A_17_P15752108 CDX1 1.48E-05 
A_17_P16241713 PHF2 1.72E-05 
A_17_P16228757 VPS13A 1.87E-05 
A_17_P15971096 GTF2IRD1 2.31E-05 
A_17_P30831096 WSB1 2.42E-05 
A_17_P26032234 CCDC136 2.84E-05 
A_17_P10947425 FFAR1 3.09E-05 
A_17_P31437695 GALR1 3.35E-05 
A_17_P20784489 DDX59 4.56E-05 
A_17_P02902273 MSX1 4.57E-05 
A_17_P16268167 PRDM12 5.31E-05 
A_17_P10361837 NME1-

NME2 
5.69E-05 

A_17_P32701000 MIR424 5.81E-05 
A_17_P02942715 CPEB2 5.97E-05 
A_17_P05778788 MIR183 2.58E-05 
A_17_P21686874 EPC2 3.07E-06 
A_17_P31614741 FKRP 2.39E-05 
A_17_P15971096 GTF2IRD1 2.31E-05 
A_17_P24938290 FBXO9 4.88E-06 
A_17_P06807708 GADD45G 5.47E-06 
A_17_P01615701 LY75-CD302 5.58E-06 
A_17_P17026267 ACTG1 6.08E-06 
A_17_P01623159 TBR1 6.16E-06 
A_17_P27346623 RNU6ATAC 6.37E-06 
A_17_P16966417 TIAF1 3.99E-05 
A_17_P09879614 TM2D3 4.71E-05 
A_17_P08379544 CTDSP2 5.27E-05 
A_17_P16292171 DHTKD1 6.24E-05 
A_17_P17194852 DBNDD2 6.48E-05 
A_17_P04327834 PCDHGC4 9.10E-05 
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The Brain-All subset revealed the largest number of relevant enriched biological pathways. To confirm 
that the identified biomarkers capture signal and not noise, we conducted 100 permutations of sample 
labels. At each permutation, the enriched pathways were obtained from KEGG and Biocarta, using 
WebGestalt. None of the pathways in Table 3.8 were significant during permutations. This verifies that 
the obtained biomarkers are biologically reliable. Table 3.8 lists the enriched biological pathways using 
the biomarkers from Brain-All (Table 3.5) using the fuzzy rule-based approach. 
 
Table 3.8 List of enriched pathways using the genes in Table 3.5. Neurologically relevant pathways 
are highlighted in green and bold. 
p-value Pathway Name and Description 
7.63E-08 Alzheimer's disease. 
2.04E-06 Long-term Potentiation (LTP): a persistent strengthening of synapses based on recent patterns of 

activity. These are pathways of synaptic activity that produce a long-lasting increase in signal 
transmission between two neurons. LTP is widely considered one of the major cellular mechanisms that 
underlies learning and memory. 

2.84E-06 VEGF signaling pathway: Vascular Endothelial Growth Factors stimulate vascular endothelial cell 
growth, survival, and proliferation. 

1.07E-05 Amoebiasis: an infection of the colon. 
1.15E-05 T Cell Receptor signaling pathway: TCR activation promotes a number of signaling cascades that 

determine cell fate. 
2.31E-05 Axon guidance signaling pathway: a key stage in the formation of neuronal networks. 
2.41E-05 MAPK signaling pathway: a chain of proteins in the cell that communicates a signal from a receptor 

on the surface of the cell to the DNA in the nucleus. 
4.18E-05 WNT signaling pathway: involved in a wide range of cellular activities. For example, Wnt1 

antagonizes neural differentiation and is a major factor in self-renewal of neural stem cells. This allows 
for regeneration of nervous system cells, indicating a role in promoting neural stem cell proliferation 

0.0001 Focal adhesion:  focal adhesions are the sub-cellular structures that mediate the regulatory effects (i.e., 
signaling events) 

0.0001 Adherens junction: protein complexes that occur at cell–cell junctions in epithelial and endothelial 
tissues. 

0.0001 B cell receptor signaling pathway: The complexity of BCR signaling permits many distinct outcomes, 
including survival, tolerance (anergy) or apoptosis, proliferation, and differentiation into antibody-
producing cells or memory B cells. 

0.0002 Apoptosis: is a process of programmed cell death that occurs in multicellular organisms. 
0.0003 Melanogenesis: related to the color of eye and skin etc. 
0.0003 GnRH signaling pathway: is a key regulator of the reproductive system, triggering the synthesis and 

release of LH and FSH in the pituitary. 
0.0004 Oocyte meiosis: is the creation of an ovum (egg cell). 
0.0006 Osteoclast differentiation: related to bone structure. 
0.0021 Amyotrophic lateral sclerosis (ALS): a progressive neurodegenerative disease that affects nerve cells 

in the brain and the spinal cord. 
0.0026 Regulation of actin cytoskeleton: can lead to diverse effects on cell activity, including changes in cell 

shape, migration, proliferation, and survival.  
0.0036 Long-term depression 
0.0115 Neurotrophin signaling pathway: Neurotrophins are a family of trophic factors involved in 

differentiation and survival of neural cells. The neurotrophin family consists of nerve growth factor 
(NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). 
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3.2 Application of COMBINER to PTSD datasets 
 
Application of COMBINER to PTSD DNA Methylation dataset using Allen Brain Atlas and Promoter 
Region subsets 

 
COre Module Biomarker Identification with Network Exploration (COMBINER) is a feature selection 
tool, developed by Yang et al. [48], which takes into account the variability in genomic data across 
different tissue and subjects. Using multiple cohorts of data as input, it enables the identification of 
disease genes, pathway biomarkers and the construction of their associated regulatory networks.  In our 
analysis, we apply COMBINER to the PTSD DNA methylation dataset (Agilent platform), consisting of 
measurements of 237,117 probes collected from PTSD (50 subjects) and control (51 subjects) groups. 
After removing probes that do not correspond to known human genes, we are left with 183,310 probes in 
total.   
We use the extended version of COMBINER [49], which enables us to build classifiers for diagnostic 
applications. In this version, the given dataset is partitioned into three cohorts with equal numbers of 
subjects from the two groups. The first cohort is used to infer the core modules for every pathway. The 
top 100 features with most discriminative power are then used for downstream analysis. The data from 
the second cohort is projected onto the top 100 pathways. The Consensus Feature Elimination (CFE) 
algorithm is run 20 times, and a voting strategy is employed to identify the candidate biomarker 
pathways. Using the third cohort we compute the cross-validated training performance on the identified 
biomarkers. The whole dataset is partitioned 20 times and the steps enumerated above are repeated on all 
partitions. The final set of predicted biomarker pathways were obtained by a voting strategy over the set 
of all candidate pathways discovered in different partitions. The results obtained by COMBINER on the 
four previously described data subsets (Brain-All, Brain-Promoter, All, and Promoter Only) are shown in 
Figure 3.3 and Table 3.9.  
In order to obtain a comprehensive biological picture, we performed the pathway enrichment analysis 
using a hypergeometric test.  This was done on the best performing panel, which was obtained by 
considering only the promoter region of the genes found in blood. The network of pathways is shown in 
Figure 3.4.  
 
Table 3.9 Table of classification performance. The “predicted” performance from cross-validation (P) 
and “actual” performance based on independent validation (A) for the four analyzed datasets are show. 
For each dataset, the number of  candidate biomarker probes, percentage of probes with p<0.001 and 
percentage of probes in the promoter region of the gene are also shown. 
AUC: area under Receiver Operating Characteristic (ROC) curve; ER: Error Rate; TPR: True Positive 
Rate; FPR: False Positive Rate    

Metric Promoter Only Brain-All Brain-Promoter All 
 P A P A P A P A 

AUC 0.7642 ± 
0.1103 

0.6658 0.6286 ± 
0.1105 

0.4921 0.6857 ± 
0.0646 

0.5500 0.7960 ± 
0.0793 

0.5579 

ER 0.3047 ± 
0.0872 

0.3846 0.3981 ± 
0.0921 

0.5128 0.3703 ± 
0.0593 

0.4359 0.2859 ± 
0.0797 

0.5385 

TPR 0.6921 ± 
0.0629 

0.6500 0.5970 ± 
0.1118 

0.5000 0.6379 ± 
0.0860 

0.6500 0.7362 ± 
0.1148 

0.6000 

FPR 0.3015 ± 
0.1361 

0.4311 0.3932 ± 
0.1342 

0.5263 0.3785 ± 
0.0679 

0.5263 0.3081 ± 
0.0843 

0.6842 

No. of probes 153 
 

24 
 

84 65 

% probes with 
p<0.001 

60.78% 50.00% 41.66% 89.23% 

% promoter 
probes 

100.00% 25.00% 100.00% 30.77% 
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Figure 3.3 Performance metric results obtained by COMBINER. The bars with error bars indicate the 
mean and standard deviation of four performance metrics from cross-validation in training data. The 
height of bars without error bars indicates performance in validation dataset. 
                          

Figure 3.4 Network  of pathways obtained by the enrichment analysis for the candidate biomarker 
probes found when considering only the promoter region of all genes. Two pathways are connected in 
the network if they share a common candidate biomarker gene. Pathways corresponding to similar 
biological processes such as metabolic and immune function, or neuronal proceses are grouped together.  
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Application of COMBINER to other single ‘omic PTSD datasets 
 
We completed single omics analysis on the 52-52 discovery cohort from five different modalities. These 
included methylation (Illumina platform), mRNA, protein, microRNA and metabolite datasets. The multi-
metric performance results for these single omics datasets are shown in Table 3.10. 
 
 
Table 3.10 Performance metric results obtained by COMBINER for different single omic datasets. 
We analysised five different modalities each having at most 51 subject with PTSD and 51 subject from 
the control group. Validation was performed on an independent dataset comprising of 31/31 subjects. P: 
Predictive cross-validated performance on the 51/51 discovery set, A: Actual or test performance on the 
validation dataset. The protein data comprised of a very small subet of subjects, hence no predictive 
cross-validated performance was computed. 
 DNA Methylation 

(Illumina) 
mRNA miRNA Protein Metabolite 

 P A P A P A P A P A 
AUC 0.508±0.133 0.514 0.507±0.163 0.668 0.613±0.089 0.618 - 0.646 0.613±0.120 0.668 
ER 0.491±0.113 0.436 0.482±0.124 0.328 0.394±0.075 0.421 - 0.367 0.413±0.095 0.323 

TPR 0.490±0.128 0.548 0.509±0.138 0.714 0.517±0.086 0.548 - 0.548 0.553±0.093 0.613 
FPR 0.472±0.116 0.419 0.475±0.131 0.367 0.305±0.130 0.385 - 0.276 0.379±0.118 0.258 
# of 

biomarkers 
2 20 3 9 16 

 
3.3 Selective reaction monitoring (SRM) quantitative proteomic approach 
 
We are conducting comprehensive proteomics analyses to identify blood proteins that can be used as 
biomarkers for PTSD diagnosis. SRM is the main approach that we are using to identify blood protein 
biomarkers for PTSD. It is a sensitive protein quantitation method based on a two-stage mass filtering in a 
triple quadruple (QqQ) mass spectrometer (MS). This targeted proteomics approach enhances the 
detection limit (as low as fmol level) of selected proteins in complex biological samples. SRM provides 
the capacity to measure as many as 100-150 proteins in a single 2-hour MS run [50]. 

 

 
Figure 3.5 Workflow for circulating protein biomarker discovery using targeted proteomics.  
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Since SRM is a targeted proteomics approach, selecting proper proteins is critical to achieve 
fruitful results. To obtain a comprehensive list of protein candidates, we used five different but 
complementary approaches as follows: i) proteins that are preferentially expressed in major organs in the 
body (brain, heart, liver, lung, kidney, and white blood cells); ii) proteins that were identified through 
global profiling studies with plasma samples from humans (normal controls and soldiers with PTSD) and 
mice (a social defeat mouse PTSD model); iii) proteins that were differentially expressed in different 
brain subregions in a PTSD mouse model; iv)  PTSD, TBI, and anxiety disorder-associated proteins 
identified in literature; and v) biomarker candidates identified within the consortium (such as BDNF, 
GRIA1, CLOCK, TGFB1).  In total, we assembled a list of 1,043 proteins for the initial screen (Table 
3.11). These proteins reflect a number of important biological pathways and processes associated with 
neuropathophysiological functions such as neuroactive ligand-receptor interaction, tyrosine metabolism, 
and long-term potentiation. 

 
 At the initial screening stage, all 1,043 proteins were monitored from both 52/52 and 31/31 sample 
sets. The overall SRM workflow is shown in Figure 3.5. The number of proteins in each category that 
were measured and detected is summarized in Table 3.11. The SRM data were first analyzed with the 
Skyline program. The Light/Heavy peptide ratios, which reflect the abundance of target peptides 
(proteins), were then extracted. In total, we can reliably detect and quantify 89 proteins in the plasma by 
SRM. As expected, more than half of these detectable proteins are from the liver (53 out of 89, Table 
3.10) since the liver contributes to a significant portion of blood proteins. 
 
Table 3.11 Summary of selected proteins in each category for SRM based measurement.  

Group Number of Proteins 
Screened 

Number of Proteins 
Detected 

Enriched in specific 
organ 

Brain 202 15 
Heart 78 3 

Kidney 47 0 
Liver 165 53 
Lung 30 4 
WBC 33 8 

PTSD associated 
protein 

Identified from iTRAQ and 
mouse model 305 8 

Identified from literature 186 9 
Identified within the consortium 23 2 
Total# 1043 89 

#: after remove duplicated proteins from different lists 
 
 The concentration of these 89 proteins was then measured in the 83/83 cohort set by SRM.  All 89 
proteins (150 peptides) can be measured in a single SRM run. After normalizing the data based on 
original plasma sample volume, peptide abundances from the 83/83 sample sets were assembled for 
further analysis. 
 
 
Correlations between SRM protein measurement results and clinical information 
 
To examine whether patient clinical information is associated with any of the plasma protein 
concentrations measured by SRM assays, we computed the Pearson correlation coefficient between 
clinical information and peptide (protein) measurement results. This comparative analysis showed that the 
level of CRP (C-reactive protein) measured by SRM correlates well with concentrations determined by 
ELISA in clinical lab (Figure 3.6). The analysis also showed a good correlation between plasma 
Apolipoprotein concentrations and blood triglyceride levels, reflecting the involvement of the APOE 
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protein at the triglyceride level. These results suggest the accuracy and reproducibility of the SRM-based 
protein concentration measurement.    
 

 
 
Figure 3.6 Correlations between plasma proteins (peptides) (APOC2, APOE and CRP) and clinical 
measures (crp and triglycerides). 
 
Identification of blood protein biomarker panel by Selective Reaction Monitoring (SRM) proteomic 
approach 
 
We received additional plasma samples from the original 52/52 discovery and 31/31 validation sample 
sets last spring so that we can complete the SRM and miRNA analyses on the entire set of samples. With 
the newly acquired samples, we conducted SRM and miRNA analyses for the entire 83/83 sample sets. 
The plasma samples were analyzed with SRM in duplicates to test the reproducibility of the measurement. 
The summary of the SRM sample composition for the 83/83 set is listed in Table 3.12.  
 

Table 3.12 SRM sample composition from the combined sets of 83/83 (52/52 and 31/31). 
 52/52 31/31 

PTSD- PTSD+ PTSD- PTSD+ 
201 43 15 18 13 
202 8 36 11 18 

Total 52 51 29 31 
 
The SRM raw data were processed with Skyline 3.5.0 to quantify peak areas of fragment ions from target 
peptides. The intensities of peptides were normalized by the corresponding heavy isotope labeled spiked-
in peptides. The ratios of the intensities between endogenous light peptides and heavy peptides were 
calculated and transformed to log with base 2. In total, we quantified 96 peptides representing 69 proteins 
from 162 samples of the 83/83 sample set. 

 
Based on all the data obtained, we observed some batch effects in the three groups of samples.  However, 
the batch difference was reasonably reduced when applying a batch effect correction method. The SRM 
data were then analyzed and a panel of top ranked 20 peptides (translated into 18 unique proteins) gave 
good average classification performances based on 100-times 5-fold cross validation using a support 
vector machine in the 83/83 samples.  The top ranked 20 peptides are listed in Figure 3.7B.  The 
combined 20-peptide panel provided an AUC of 0.756 with an accuracy of 68.8% in the discovery dataset 
(Figure 3.7A).  
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Figure 3.7. Summary of 5-fold Cross validation performance on peptide panels. The performance 
curve showed that the 20 peptides panel provides an optimal feature set (AUC: 0.756 and ACC: 68.8%). 
AUC: Area under the curve, ACC: Accuracy. 
 
3.4 Identification of miRNA biomarker panels based on small RNA sequencing data 
 
A more reliable small RNA library construction method 
 
Next generation sequencing (NGS) is gaining interest as the method of choice to profile small RNA 
including miRNA in biological samples. It is well-known that current small RNA library construction 
methods suffer from significant sequence bias [51-54]. Depending on which library construction kit is 
used, very different profiling results can be obtained from the same sample. For example, hsa-miR-486 is 
the most abundant miRNA identified in libraries constructed with the Illumina TruSeq kit (accounting for 
> 80% of the reads in some libraries), whereas with the NEB (New England Biolabs) kit it typically 
accounts for only about 5%. This creates significant downstream validation problems.  
We developed a small-RNA library construction procedure that offers higher reproducibility with less 
sequence bias (Figure 3.8). In the new protocol, we have incorporated four degenerate bases in both the 
3-prime and 5-prime adapters which provide a more favorable ligation partner for each individual miRNA 
thus reducing ligation bias compared to traditional approaches. In addition, we replaced the typical RNA 
ligase used in most commercial kits with a modified version that produces fewer side products. To 
enhance ligation efficiency, we also included polyethylene glycol (PEG) in the ligation mixture. We used 
a single-stranded DNA binding protein, a 5’ deadenylase enzyme, and a DNA specific exonuclease to 
degrade any unligated RNA adapters, which also suppress the formation of unwanted ligation products 
such as adapter dimers in the library. To further reduce the amplification of any remaining adapter-dimer, 
we adapted a two-stage size-selection step in which an initial size selection is performed after 4 cycles of 
amplification. With this new library construction method, we have significantly increased the number of 
reads mapped to miRNA and reduced the bias in both synthetic miRNA as well as real biological sample.  
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MiRNA profiles of all 83/83 set plasma samples were generated with small RNA sequencing technology 
except two samples (Table 3.13). The samples were run in four different sequencing runs due to the 
number of samples can be on the sequencing flow cell.  
 
Table 3.13 Information of samples for small RNA sequencing data. 

Batch PTSD Negative PTSD Positive Total Sample 
Batch 1.  12 24 36 

201 samples 12 12 24 
202 samples 0 12 12 

Batch 2.  43 5 48 
201 samples 40 3 43 
202 samples 3 2 5 

Batch 3.  12 36 48 
201 samples 2 10 12 
202 samples 10 26 36 

Batch 4.  15 17 32 
201 samples 7 3 10 
202 samples 8 14 22 

Total 82 82 164 
 

 
We used an in-house developed small RNA library construction method – 4N protocol to reduce miRNA 
measurement bias in the current commercial library construction kits.  The 4N protocol significantly 
reduced library construction bias as indicated in Figure 3.8 when a pool of equal molar of synthetic 
miRNAs were used to construct small RNA library.   

 
 

 
Figure 3.8. New small RNA library construction protocol reduces sequence bias. The read distribution in 
sequence libraries generated from a pool of 962 equal molar synthetic miRNAs. Y-axis: read per million, X-
axis: different library construction method. 
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Classification analysis of sequencing data 
 
Similar to the approach used on the SRM data, the SVM-RFE feature selection algorithm was applied to 
small RNA sequencing data to identify optimal feature set showing maximum classification performance. 
With 100 times 5-fold cross validation, we identified 28 miRNAs panel provides an AUC of 0.7655 
(Accuracy: 0.6906, Sensitivity: 0.7167, Specificity: 0.6674) (Figure 3.9). 
 
 

 
Figure 3.9 Summary of 5-fold Cross validation performance on miRNA panels. The performance 
curve showed that the 28 miRNAs panel provides an optimal feature set, indicated by vertical blue line 
(AUC: 0.7655 and ACC: 69.06%). AUC: Area under the curve, ACC: Accuracy, TPR: True positive rate 
(Sensitivity), TNR: True negative rate (Specificity). 
 
Validation of miRNA-sequencing data by RT-qPCR 
 
To validate the results from the small RNA sequencing data, we conducted qPCR with advanced Taqman 
miRNA assay on 7 selected human miRNAs: miR-28-3p, miR-127-3p, miR-143-3p, miR146a-3p, miR-
152-3p, miR-181a-1-3p and miR-584-5p. Several invariant miRNAs were also included and used in 
qPCR normalization. Due to the limitation of amount of the plasma samples we have, only 128 samples 
(70 control and 58 PTSD patients) were used.  To check the consistency of qPCR data, three replicates 
were generated for each of the miRNAs. Standard deviation of the three replicates was then computed and 
sample with standard deviation value greater than 3 were removed from analysis. Comparing results 
between qPCR and sequencing data showed a good correlation, which suggest the sequencing based 
miRNA profiling results are comparable with qPCR. The fold changes of these 7 miRNAs between PTSD 
positive and negative patients observed in sequencing can also be validated in qPCR data (Figure 3.10). 
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Figure 3.11 In vitro cell proliferation was determined by MTS based assay after 48 hours post transfection 
with miR-143-3p mimic and controls. 

 
Figure 3.10 Comparison of fold changes (PTSD+/-) between small RNA sequencing data (blue bars) 
and qPCR data (red bars). 
 

3.5 Functional implication of PTSD associated circulating miRNA 
 
Our results showed a number of dysregulated circulating miRNAs in PTSD patients. Among these, the 
concentration of a meninges enriched miRNA, miR-143-3p, is decreased in PTSD patients. We are 
interested in further understanding the role of miR-143-3p in PTSD.  Interestingly, some of the predicted 
targets of miR-143-3p such as NTRK2, BCL2 , GABRB3, CALM1, EGR1 and TSC22D3, have been 
shown to play a role in PTSD [55-58]. To assess the function of miR-143-3p, we transfect the microRNA 
mimics into glioblastoma cell line (SF539) and 293T (epithelial cells). The overexpression of miR-143-3p 
inhibits/reduces the proliferation of these cells based MTS assays (Figure 3.11). Additionally, 
immunofluorescence staining of Col1A1, a validated target of miR-143-3p, suppresses the level of the 
Col1A1 protein in SF539 cells (Figure 3.11).  
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3.6 Integration of SRM and miRNA data for biomarker panel discovery 
 
We applied support vector machine (SVM) with recursive feature elimination (SVM-RFE) algorithm to 
find an optimal subset of features to classify PTSD- and PTSD+ groups. SVM-RFE was applied to select 
peptides and miRNAs for the classification of PTSD- and PTSD+ groups. The 5-fold cross-validation was 
repeated 100 times to identify optimized features and obtain an unbiased estimation of classification 
accuracy. The importance of each feature in the classification was determined based on the selection 
frequency from 5-fold cross-validations. The features were sorted in order of their frequencies. By 
increasing the number of features, SVM models were constructed and the average classification 
accuracies were computed. The optimal feature set was then determined at the highest average 
classification accuracy of the test set. By applying repeated cross validations with SVM-RFE to 83/83 
sample set, we identified 20 peptides with AUC of 0.756 in cross validation test sets. The performance of 
the identified 20 peptides was validated in 33 validation samples. The AUC, accuracy, sensitivity and 
specificity were 0.7545, 0.6061, 0.5769, and 0.6250, respectively. 
 
Then SRM and miRNA-seq data were also integrated by combining 20 peptides and 28 miRNAs 
identified from the analyses using individual data. The same algorithm was applied and 24 features of 15 
peptides and 9 miRNAs were identified with AUC, accuracy, sensitivity, and specificity of 0.8305, 
0.7784, 0.7488, and 0.8081, respectively. The performances using peptides, miRNAs, and both datasets 
are summarized in Table 3.14.  
 
Table 3.14 Summary of classification performance. The performance is based on 5-fold cross 
validation using 83/83 set. 

Data type (Data set) Peptide (83-83) miRNA (83-83) Integration (83-83) 
No of feature(s) 20 28 24 

 
 
 
 
 
 
 

Feature(s) 

CPN1-IVQ, HPX-SGA, 
C4BPB-LIQ, CTSS-
GID, CLU-LFD, 
PGLYRP2-GCP, VTN-
VDT, APOE-LGA, 
APCS-IVL, B7Z8Q5-
LIA, ACTC1-DSY, 
AMBP-GEC, AFM-
LPN, APOF-SGV, 
ITIH2-VQF, C5-TDA, 
IL1RAP-VAF, ITIH4-
LGV, PLG-EAQ, 
PGLYRP2-EFT 
 

miR-598-3p, miR-4286-
5p, let-7b-5p, miR-590-
3p, miR-192-5p, miR-
99a-5p, miR-155-5p, 
miR-100-5p, miR-9-1-
5p, miR-363-3p, miR-
133a-2-3p, miR-484-5p, 
miR-144-3p, miR-182-
5p, miR-4485-3p, miR-
3615-3p, miR-4317-5p, 
miR-93-3p, miR-133a-
1-3p, miR-338-3p, let-
7e-5p, miR-93-5p, miR-
329-2-3p, miR-660-5p, 
miR-4454-5p, miR-
4532-5p, miR-505-3p, 
miR-548au-5p 
 

15 peptides : C4BPB-
LIQ, CPN1-IVQ, HPX-
SGA, PGLYRP2-GCP, 
CLU-LFD, B7Z8Q5-
LIA, APCS-IVL, CTSS-
GID, PLG-EAQ, AFM-
LPN, ITIH2-VQF 
,PGLYRP2-EFT, VTN-
VDT, C5-TDA, 
ACTC1-DSY 
 
9 miRNAs : miR-4532-
5p, let-7b-5p, miR-100-
5p, miR-338-3p, miR-
598-3p, miR-93-5p,  
miR-155-5p, miR-4485-
3p, miR-4317-5p 
 

AUC 0.756 0.7655 0.8305 
ACC 0.688 0.6906 0.7784 
TPR 0.681 0.7167 0.7488 
TNR 0.691 0.6674 0.8081 
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3.7 Development of optimization strategies to improve sensitivity or specificity for biomarker 
identification and classification 
 
Metric-focused recursive feature elimination for customized biomarker identification 
 
Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the 
goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and 
smaller sets of features. The estimator ranks features by estimating the impact of projecting subjects from 
an N-dimensional space to a smaller (N-1 dimensional) subspace. Most of these approaches are 
insensitive to the misclassification error rate of a given class. We have developed a new approach in 
which the estimator takes into account the misclassification rate of each class. The RFE approach is used 
for feature reduction to obtain biomarkers, in conjunction with a classifier.  In this work, we chose to 
focus on linear classifiers. The benefit of the proposed method has been demonstrated for a binary 
classification problem on a highly replicated publicly available TCGA ovarian cancer dataset.  
In the present work, we use linear discriminant analysis (LDA) and support vector machine (SVM) to 
obtain the linear decision boundary. In the traditional RFE method (baseline), the decision to remove a 
feature is based on the coefficients of the decision boundary obtained by a linear classifier. Features are 
sequentially removed and the subset of features which gives the best performance is considered as the 
final feature subspace. This greedy search approach does not guarantee a global optimal solution. The 
proposed method modifies the feature elimination step and takes into account the class-specific 
classification errors. The analysis pipeline consisting of bootstrapping, cross-validation and recursive 
feature elimination is shown in Figure 3.12. 

Figure 3.12 Data analysis pipeline for metric-specific biomarker identification.  Bootstrapping and k-
fold cross validation are used to obtain robust features. The metric-specific feature elimination algorithm 
is implemented during cross-validation to get the best feature set. 
 
Metric-specific feature elimination method 
 
Any hyperplane can be written as 

𝑤! ∙ 𝑥! + 𝑏 = 0.      (1) 
We can rewrite Eqn. 1 as 

!!∙!!

!!
!
+ !

!!
!
= 0     (2) 
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The above equation can be written in the Hessian normal form  
𝒏 ∙ 𝒙 =  −𝑝,      (3) 

where 𝑛! =  !!

!!
!
 are the direction cosine of the unit vector perpendicular to the given plane. The RFE 

strategy proposed by [59] inherently uses the values of the direction cosines of the decision boundary 
obtained by support vector machine to rank features. In this top down feature reduction approach, the 
feature with the smallest coefficient in Eqn. 1 is removed. This is equivalent to removing a feature with 
the smallest direction cosine value (the largest angle). Principal Component Analysis (PCA) is a widely 
used tool to extract statistical information from a given dataset. It employs the covariance structure of the 
data to generate an orthogonal vector set referred to as principal components. Each of these vectors is the 
eigenvector of the covariance matrix and the associated eigenvalue is the measure of relative variance in 
that direction.  
In the proposed method we modify the RFE ranking strategy or feature importance estimator function, to 
incorporate class specific variance information. This allows for the selection of features which have 
expression values ci more tightly regulated in one group vs another. We incorporate this information into 
the feature importance estimator function by considering the first principal components of only the class 
ci. More precisely, we define 

𝑓! =  !!
!!

       (4) 
Where ui are the direction cosine of the first eigenvector of the subset of data that belongs to class ci. 
Every coefficient wi of the decision boundary (DB) can be imagined to be weighted by the direction 
cosine of the eigenvector of the class ci. The feature that minimizes 𝑓 is removed. The feature removed 
then enables the projection of the data onto a subspace that is closest to the orthogonal subspace to the DB 
and simultaneous reduces the variance of ci.  Using the above method, if there exists a set of highly 
discriminative features such that there are significant differences in relative variances for a given class, 
then one can obtain lower misclassification rate for that class. For example, reducing to relative variance 
of one specific class may lead to improvement in the misclassifications of subjects in that class. 
 
Application of metric-specific feature elimination to ovarian cancer dataset 
 
An overview of the metric-specific biomarker identification is shown in Figure 3.12. Using ovarian 
cancer Affymetrix gene expression data from The Cancer Genome Atlas (TCGA), biomarker 
identification was performed to classify subjects based on mortality. A total of 159 positive subjects 
(survival less than three years), and 160 negative subjects (survival more than three years) were used.  
The biomarker performance metrics for cross-validation and validation are shown in Figure 3.13. Similar 
performance is achieved for the ER, TPR and FPR-estimator strategy, with slightly improved TPR 
performance using the TPR-estimator, and a lower False Positive Rate using the FPR-estimator strategy.  
The distribution of gene expression of the final biomarker candidates for each strategy is shown in Figure 
3.14. As expected, the TPR-estimator strategy identifies biomarkers with greater expression variance in 
the negative class, while the FPR-estimator strategy identifies biomarkers with greater expression 
variance in the positive class. Next, we compared the candidate biomarker panels from each strategy, 
computing the overlaps between panels and the fraction of candidate biomarkers genes that are known to 
be cancerous from NetPath [60], Atlas of Cancer Genes [61], Census Genes [62], G2BC [63], and KEGG 
Pathways of Cancer [64]).  
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Figure 3.13 Bar plot showing performance metrics for candidate biomarkers obtained by ER 
(blue), TPR (orange), and FPR-estimator (green) strategy on ovarian cancer dataset. Height of first 
bar of each color indicates average performance during cross-validation (with error bars indicating 
standard deviation). The second bar indicates performance in the validation dataset. 
 

 
Figure 3.14 Distribution of gene expression for candidate biomarkers from the ovarian cancer 
dataset. Features obtained by TPR-estimator (top), FPR-estimator (middle), and ER-estimator (bottom) 
are shown for the positive (red) and negative class (green). Features with (*) indicate genes known to be 
cancerous and those with (+) indicate genes common to both TPR and FPR-estimator.  
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Venn Diagrams show the large fraction of candidate biomarker genes that are unique to a single estimator 
strategy, in addition to large fraction of known cancer genes (Figure 3.15). Finally, gene set enrichment 
analysis showed highly orthogonal pathways associated with candidate genes from each estimator 
strategy (Figure 3.16). This method may be further used to improve biomarker identification efforts in 
PTSD datasets, and will allow for specific tuning of True Positive or False Positive Rates. 
 

 
Figure 3.15 Overlap of candidate biomarkers identified by ER, TPR, and FPR-estimator strategy 
from ovarian cancer dataset analysis. (a) Venn diagrams indicate overlaps of identified biomarkers by 
each method (and fraction of genes known to be cancerous). More than half of biomarker genes identified 
by the TPR and FPR-estimator are unique genes, not identified by other methods. (b) Venn diagram 
shows the mean variance ratio (variance in positive class/variance in negative class) for each gene set, 
using only the cancerous genes from (a). (c) Mean variance ratio for each gene set in the validation data. 
Between-class variance directionality is preserved in the TPR and FPR-estimator groups, indicating 
stability in the identified signals. (d) Mean of variance ratio for each gene set in the validation data, using 
only fraction of genes known to be cancerous. Green values outside of Venn Diagram indicate the total 
quantities for each method. 
 
 
DEVG analysis for sensitivity and specificity optimization 
 
We have incorporated a novel feature selection algorithm in order to improve either the sensitivity or 
specificity of a classifier. The feature selection strategy identifies features with differing standard 
deviations, indicating one group shows tighter regulation while the other shows looser regulation. The 
looser regulation group may correspond to two (or more) tightly regulated subtypes with different mean, 
or a single homogeneous group with a larger variance, indicating less biological control. The notion of 
disease group differences in variance has been previously proposed as Differential Expression Variance 
Genes (DEVGs) [65]. An illustration of DEVG scenarios is show in Figure 3.17. 
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Figure 3.16 Results of biomarker candidate gene enrichment analysis for ER, TPR and FPR-
estimator strategy. Unique enriched pathways from FPR and TPR-estimator candidate genes are shown 
in (a), and (c), respectively. Enriched pathways from ER-estimator genes are shown in (b), along with 
pathways also identified from TPR and FPR-estimator analysis. Pathways above red dashed line in (b) 
were also identified by the TPR-estimator analysis, and pathways below the blue dashed line were also 
identified by FPR-estimator analysis.  
 

Figure 3.17 Overview of four disease gene expression distributions. (a) A traditional differentially 
expressed gene shows a difference in means between disease and control groups. (b)-(d) Differential 
expression variance identifies genes showing differential variance in expression distributions between 
disease and control, including cases of tight or relaxed biological control (b,c), or cases of disease 
subgroups which mask differences in subgroups means (d). 
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In our proposed methodology, we have incorporated this idea, along with traditional Differentially 
Expressed Genes (DEGs) to identify a robust set of features for specificity and sensitivity-specific 
classification. We used the following equations to rank all features for feature selection: 

!"!"#$%"&
!"!"#$

𝑒!!       (5) 
!"!"#$
!"!"#$%"&

𝑒!!       (6) 
Where p is the differential expression p-value, and sd is the standard deviation of all PTSD or control 
samples for the gene of interest. Eqn. 5 is used to maximize the True Positive Rate (TPR), while Eqn. 6 is 
used to maximize the True Negative Rate (TNR). 
We used the proposed feature selection algorithm along with the Nearest Shrunken Centroids (NSC) 
classifier to improve sensitivity and specificity. In addition to the proposed feature selection strategy, we 
tuned the shrinkage parameter of the NSC classifier to both minimize Error Rate and maximize the 
sensitivity (TPR) or specificity (TNR) during nested cross-validation. We compared the performance of 
the traditional classification strategy (using t-test p-values for feature selection and minimizing the error 
rate during centroid shrinking), with the proposed methodology using 100 rounds of 5-fold cross-
validation. We applied this methodology to the metabolomics, proteomic, miRNA, endocrine, and CLIA 
Lab PTSD data using the 83-83 cohort for cross-validation. The proteomic dataset showed poor 
performance using a NSC classifier (average AUC<0.5) for traditional and modified algorithms, and has 
been excluded. However, the results for the four remaining datasets are shown in Figure 3.18. 
 
In the metabolite, endocrine, and miRNA datasets, the algorithm shows minor improvements in TPR and 
TNR using the TPR-maximization and TNR-maximization, respectively. However, in the CLIA Lab data, 
our proposed algorithm does not work as expected. We do not see improvements in the TPR for the TPR-
maximization algorithm, due to a loss in overall accuracy (shown by the lower AUC). We expect 
additional improvements can be seen with the incorporation of a TPR or TNR-specific decision boundary, 
or a more sophisticated classifier.  
 

4. Biomarker identification, classification, and multi-omic analysis of PTSD datasets 

4.1 Multi-omic COMBINER method for obtaining a multi-modal biomarker panel 
 

We have extended the COMBINER platform to obtain a heterogeneous panel of candidate biomarkers. In 
the current strategy, we first use COMBINER to obtain single omic panels for different datasets [49]. 
Then, using the new proposed method (Figure 4.1), we integrated the single omics panels to obtain a 
multi-omic panel. At the integration step we select features from different modalities in order to maximize 
the relevance score (computed using mutual information theory), AUC, and accuracy of features on the 
training data.  This is done by employing the greedy approach and hence does not guarantee optimal 
solution. Using the proposed integration method we obtained results for methylation and metabolites, 
miRNA and metabolites, proteins and metabolites, and proteins, metabolites and miRNA. The multi-
metric performance results for these multi-omic combinations are shown in Table 4.1. 
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Figure 3.18 Barplot of sensitivity and specificity-optimized NSC algorithms. Height of bars indicates 
average cross-validated performance. 
 
 

Figure 4.1 The proposed extension for COMBINER. First, the best feature sets for each uni-modal 
data type are obtained from COMBINER. These candidate uni-modal panels are concatenated and the 
proposed feature selection strategy is used to obtain a multi-omic candidate biomarker panel. 
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Table 4.1 Validation performance results obtained by COMBINER for different multi-omic 
datasets. We analyzed four different modalities each having at most 51 subject with PTSD and 51 subject 
without PTSD. Validation was performed on the 31/31 dataset. 
 

 
 

Methylation + 
Metabolite 

miRNA + 
Metabolite 

Protein + 
Metabolite 

Protein + 
miRNA + 

Metabolite 
AUC 0.6524 0.7519 0.6426 0.6800 
ER 0.3548 0.2807 0.3929 0.3214 

TPR 0.6774 0.6452 0.5806 0.6129 
FPR 0.3871 0.1923 0.36 0.2400 

No. of 
biomarkers 

3 2 12 6 

 
4.2 Semi-supervised graph-based integration 
 
We have developed a novel multi-omics approach based on graph theory trying to integrate different data 
types such as DNA methylation and gene expression along with latent biological knowledge in terms of 
biological pathways. 
Semi-Supervised Learning (SSL) methods stand between unsupervised methods, where training samples 
are entirely unlabeled, and supervised methods, where all training samples are labeled. SSL algorithms 
make use of unlabeled data along with labeled samples to enrich the training set and construct a more 
efficient and reliable classifier, especially when a large amount of unlabeled samples is available. The 
performance of such classifiers is measured on the unlabeled samples only. The key to SSL approaches is 
the consistency assumption which states: (1) points on the same structure (i.e., manifolds) are likely to 
have the same label, and (2) nearby points are also likely to have the same label. SSL methods have 
proven to be quite productive in dealing with complex datasets such as biological data where data 
structures are intertwined [66]. 
In this approach, each node represents a sample and the edges can be established between nodes using the 
K Nearest Neighbors (KNN) method. In fact, edges between nodes convey the mutual relationship 
between the samples. The more the weight of the edge, the more likely the nodes it connects to have the 
same label.  
KNNs of each sample can be computed by ordinary Euclidean distance, and the weight of the edges 
obtained using the Gaussian kernel. Suppose { } m

nll xxxxxX ℜ⊂= + ,,,,,, 121 ……  to be the entire set of 

n  samples comprising l  labeled samples and ln −  unlabeled samples. Let { }cL ,,1…=  denote the class 

labels. Let [ ]ttnt FFF ,,1 …= be an cn×  matrix corresponding to classification of the set X , where 

sample ix  belongs to class j  if ijLji Fy
∈

= maxarg . Here, F is a vector function which assigns a vector 

iF  to each sample ix . The matrix F  is obtained from Eqn. 7: 

YSIF 1)( −−= α  (7) 

where I  is an nn×  identity matrix and α  denotes the tradeoff parameter between the two conditions of 
smoothness and loss. Also, ]0,,0,,,[ 1 …… lyyY =  denotes the labels where samples are labeled by 1 and 
-1 and unlabeled samples are represented by 0. Here, WDS −= is the graph Laplacian matrix, where W
is the symmetric weight matrix calculated in Eqn. 8 and D  is given by Eqn. 9. 



47	
	

( ) ( )

⎪
⎩

⎪
⎨

⎧
≠

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
=

Otherwise

ji
xxxx

w
ji

t
ji

ij

,0

,exp 2σ  

(8) 

)( iddiagD =  (9) 

where ∑=
j

iji wd . 

Graph integration 
One of the goals of this work has been to integrate the computed graphs as the result of applying SSL on 
each genomic level. The purpose of graph integration is to leverage hidden knowledge in the gene 
expression and DNA methylation data, along with biological knowledge such as pathway information, to 
obtain the best classification performance. The integration process can be carried out by finding the 
optimal combination of each dataset represented by a graph. Suppose that there are K  graphs. The 
weights of the combined graphs can be obtained using the following optimization model: 
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where kS  and kα  represent the graph Laplacian matrix and the optimum weight coefficient of the graph 
k , respectively. 
The final solution of the abovementioned model can be calculated by Eqn. 11: 
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The approach 
 
The main contribution of this work has been to provide a systematic approach to incorporate biological 
knowledge in the form of biological pathways into a graph-based SSL algorithm, to gain a better 
phenotype classification performance. Each genomic level such as gene expression or DNA methylation 
graph has a complementary graph containing its corresponding pathway information. Figure 4.2 illustrates 
the overall pipeline of the approach. In this figure, each node represents a sample, where the samples are 
the same for all genomic levels being considered. Graphs of each level are constructed by the SSL 
algorithm. It should be mentioned that in the context of SSL, all samples including labeled and unlabeled 
are taken into account during the process of learning. In Figure 4.2 the two-class problem is addressed 
where node classes are represented by ‘1’ and ‘0’ and unlabeled samples are represented by ‘?’. 
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Figure 4.2 A graphical representation of the graph integration method. 
 

 
 

Figure 4.3 Gene extraction process from biological pathways. 
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Although construction of the graphs with respect to each dataset is performed by the existing SSL 
algorithm discussed in the Section 1.2.1, in order to construct the graphs considering biological pathways, 
three new approaches have been developed based on the set of COndition Responsive Genes (CORGs) 
[67]. After extracting the entire signaling genes (CORGs) of each pathway, three approaches were 
considered to shape the final set of genes for constructing the pathway graphs. In Approach 1, all the 
genes in all the CORGs were listed and used as the final set of features. Note that it is possible that some 
genes are repeated in various CORGs. In such cases, just one of them is adopted. In Approach 2, all the 
unique genes in the CORGs are ordered in an ascending manner based on their p-values. Then, genes with 
p-values larger than a threshold are filtered out. The threshold that we have set in this work for filtering 
genes was 0.001. Finally, in Approach 3, we make use of the number of times that each gene has been 
repeated 
in the CORGs. The more a gene is repeated, the stronger it is as a biomarker. Finally, 
a threshold is applied and low frequency genes are filtered. In this paper, we set the 
threshold to be 0.01x(# pathways). The overall pipeline of these approaches is depicted in Figure 4.3. The 
process of biomarker discovery is done through a greedy intelligent search based on Simulated Annealing 
meta-heuristic search algorithm. This process is demonstrated in Figure 4.4. 
 
 

Figure 4.4 Biomarker discovery pipeline in the proposed graph-based SSL. 
 
 
In what follows, we have represented single and multi-omics experimental results along with the obtained 
sets of biomarkers (Figures 4.5-4.6, Tables 4.2-4.5). 
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Figure 4.5 Biomarker performance from graph-based integration of (A) Methylation and mRNA, 
(B) Methylation and Metabolite, and (C) Methylation, mRNA, and Metabolite. 
 
 
 
  

C 

B 
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Figure 4.6 Biomarker performance from graph-based integration of (A) mRNA and Metabolite, (B) 
mRNA and Protein, (C) Methylation and Protein, and (D) Methylation, mRNA and Protein. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B 

C D 
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Table 4.2 Biomarker list of the DNA methylation data (Illumina 83-83) 

CpG Site Gene p-value 
cg14080518 SMURF1 8.36E-06 
cg23131950 AP2S1 9.41E-06 
cg00022594 AKAP8L 1E-05 
cg22661330 LANCL2 1.57E-05 
cg05452391 C5orf56 2.71E-05 
cg02779164 SETBP1 0.00905 
cg14202338 GIPC3 0.007265 
cg04353053 C1orf127 0.007703 
cg01302119 WDR60 0.008452 
cg19889580 KCTD16 0.002264 
cg10525567 NCKIPSD 0.009311 
cg23968383 ZNF572 0.00354 
cg16055159 CEP97 0.000887 
cg07502936 ZNF135 0.006944 
cg12154261 TDRD9 0.001504 
cg02992296 INTS1 0.006454 
cg24642820 NUP210 0.007784 
cg12628062 PSMC3IP 0.005791 
cg14474728 RPH3AL 0.003815 
cg24037389 SCARA5 0.009535 
cg09267483 BTBD17 0.007057 
cg20436533 CDK15 0.005272 
cg24508208 CALD1 0.000456 
cg26489108 DMRT3 0.003994 
cg10202544 TC2N 0.003754 
cg14596589 SLC12A7 0.001306 
cg14492241 SNX8 0.0034 
cg17562528 DSCAM 0.000432 
cg12476052 SV2B 0.009245 
cg13861527 BRE 0.009658 
cg02695697 MMP16 0.00488 
cg12385425 TMEM17 0.007685 
cg10332704 THEM5 0.009413 
cg19520337 CPNE8 0.009181 
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Table 4.3 Biomarker list of the metabolite data (83-83). 
Biomarker p-value 
adrenate224n6 0.534074 
phenylacetylglutamine 0.196939 
stachydrine 0.172708 
ifn_g 0.705392 
m2hydroxypalmitate 0.006966 
m5alphapregnan3beta20alphadioldisulfate 0.139472 
palmitate160 0.162172 
alphahydroxyisovalerate 0.171466 
methyl4hydroxybenzoate 0.512394 
urea 0.407291 
dodecanedioate 0.313245 
dihomolinoleate202n6 0.003027 
m1stearoylglycerol 0.440302 
m4androsten3beta17betadioldisulfate1 0.652193 
sarcosineNMethylglycine 0.073874 
Nacetylglycine 0.302841 
phenyllactatePLA 0.044491 
creatinine_metabolon 0.711369 
m3methyl2oxovalerate 0.288728 
gammaglutamylalanine 0.157785 
c45_l_3n56tp16tp_16p56n 0.003636 
gsh_gssg 0.115121 
m2methoxyacetaminophensulfate 0.579075 
m13dipalmitoylglycerol 0.006984 
erythrosphingosine1phosphate 0.052747 
tnf_a 0.182351 
salicylate 0.368304 
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Table 4.4 Biomarker list of the mRNA data (83-83). 

Biomarker Gene p-value 
A_23_P253395 UNC13B 0.0000106 
A_23_P46936 EGR2 0.0000156 

A_23_P214080 EGR1 0.0000236 
A_23_P62901 BTG2 0.0000375 

A_24_P144773 RNF145 0.005245 
A_33_P3308045 EIF4E2 0.002587 
A_23_P302060 IFNE 0.007967 

A_33_P3381305 NA 0.00745 
A_33_P3669411 NA 0.000302 
A_33_P3421664 TDRD5 0.002186 
A_23_P500861 SYNE1 0.008167 

A_33_P3777165 FLJ31715 0.004973 
A_33_P3397613 NA 0.004402 
A_33_P3441060 C6orf35 0.003613 
A_33_P3318292 SFPQ 0.007425 

A_23_P79518 IL1B 0.000159 
A_33_P3417620 ZRSR2 0.001234 
A_23_P123539 PPP2R2A 0.007501 
A_24_P658584 SASH1 0.0035 
A_24_P16124 IFITM4P 0.001114 
A_24_P81900 SLC2A3 0.006441 

A_33_P3364864 NAMPT 0.003411 
A_33_P3238007 LARP1B 0.002119 
A_33_P3276386 NA 0.001686 
A_23_P323166 SRRM2 0.008381 

A_33_P3402489 OAS3 0.007179 
 

Table 4.5 Biomarker list of the protein data (83-83). 
Biomarker p-value 
PON1.IQN 0.004135 
PPBP.ICL 0.009251 

IGFALS.DFA 0.009404 
PON1.IFF 0.012719 

APOA2.SPE 0.423942 
PPBP.GTH 0.044186 
A1BG.SGL 0.804879 
HABP2.LIA 0.506517 

C8B.IPG 0.38084 
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4.3 Greedy Multi-view Learning for Multi-Omics Data Analysis 
 
In this project, we have developed a multi-omics classification and biomarker discovery approach based 
on the concept of multi-view learning. The overall pipeline of this method is depicted in Figure 4.7. 
 
 

 
Figure 4.7. Multi-view learning and biomarker discovery. 
 
 
 
The numerical experiments were performed on the Agilent gene expression and methylation datasets, 
using the 52-52 for training and 31-31 for validation. The results of the DNA methylation validation are 
represented in Table 4.6 and a list of the identified CpG sites are reported in Table 4.7. 

 
 

Table 4.6 Classification performance for the greedy multi-view learning approach on Agilent DNA 
methylation data. 

 Greedy multi-view method 
Metric P A 
AUC 0.622 0.523 
ER 0.41 0.491 
MCC 0.139 0.026 
MSPE 0.225 0.278 
Youden 0.341 0.175 
PPV 0.5881 0.511 
NPV 0.592 0.530 
TPR 0.572 0.512 
FPR 0.377 0.441 
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Table 4.7 The biomarker CpG sites identified by the multi-view greedy search algorithm. 
ID Symbol Name p-value FDR 

A_17_P15535760 MFSD10 Encodes a member of the major facilitator 
superfamily of transporter proteins. 

2.017E-08 0.0096 

A_17_P16992190 KPNB1 Diseases associated with KPNB1 include 
Campomelic dysplasia, a severe disorder that 
affects the development of the skeleton and 
reproductive system. 

2.637E-08 0.0153 

A_17_P15006698 SAMD11 May play a role in photoreceptor development. 4.992E-08 0.0102 
A_17_P15229454 WDR43 A Protein Coding gene. 8.152E-08 0.0226 
A_17_P11194228 ZMYND8 This gene encodes a receptor for activated C-

kinase (RACK) protein. 
1.235E-06 0.0139 

A_17_P16821815 PDE8A The protein encoded by this gene belongs to the 
cyclic nucleotide phosphodiesterase (PDE) family, 
and PDE8 subfamily. 

20965E-06 0.0614 

A_17_P32097142 DGCR6 Could play a role in neural crest cells migration. 3.876E-06 0.0265 
A_17_P02004261 KIF1A a motor protein involved in the anterograde 

transport of synaptic-vesicle precursors along 
axons. 

1.94E-06 0.0472 

A_17_P03396998 ANXA5 Diseases associated with ANXA5 include 
pregnancy loss and amelanotic melanoma. 

1.917E-06 0.055 

A_17_P16378261 LZTS2 Negative regulator of the Wnt signaling pathway. 1.847E-06 0.0069 
 
 
4.4 Boosted decision trees for multi-omic classification with missing samples 
 
To integrate multi-omic datasets, we have developed a confidence-based boosted decision tree classifier. 
Feature selection, tree building, and final classifier construction are completed independently on each 
available data type using the ‘gbm’ package in R. Predictions are made for each data type in the 
validation dataset, including the probability of belonging to either the PTSD or control class. Finally, for 
subject with multiple available datasets, the most extreme probability (closest to 0 or 1) over all datasets 
is used to determine the disease status. Using this strategy, we compare all available datasets but use only 
one dataset for each subject to make the final prediction. This allows subjects to classified based on the 
“best” dataset for each person. This strategy may help to reduce the effect of noise on predictions and 
may help capture the existence of subtypes in some (or all) molecular data types. Additionally, by using a 
decision tree-based approach, missing values can be easily accommodated by sending missing data to a 
third node at each split. Example trees illustrating this are shown in Figure 4.8.  



57	
	

 
Figure 4.8 Diagram of decision tree incorporation of missing data. Left: Traditional decision tree 
without missing data. Each node in the tree is divided by the split point of the designated variable into 
two branches. Each node is labeled with the fraction of disease samples and percentage of overall data on 
that branch. Each variable and split point is chosen to maximize the purity of the branches below. Right: 
Decision tree with missing data. Instead of two branches emerging from each node, one for above and one 
for below the split point, three branches are shown. The third branch contains all subjects for which the 
chosen variable was missing.  

 
Table 4.8 shows a summary of the available 83/83 molecular data used to evaluate this method. In 
particular, by incorporating the subjects with missing mRNA and miRNA data, the statistical power can 
be improved for classification. 
 
 
Table 4.8 Summary of available 83/83 data for multi-omic classification. 

Data Type # of features used for classification # of PTSD Subjects # of Control Subjects 
DNA Methylation 429948 81 82 

mRNA 50599 76 80 
Metabolite 244 82 83 

Protein 96 82 80 
Endocrine 35 82 83 
CLIA Lab 44 81 82 
miRNA 43 71 74 

 
 
To compare the proposed multi-omic classification strategy with the performance of each individual data 
type, we performed an identical feature selection strategy, and decision tree classifier to each data type 
individually. The performance of each data type over 100 rounds of 5-fold cross-validation is shown 
along with the multi-omic performance for comparison. The average performance over all cross-
validation runs is shown in Table 4.9. Integrating additional data types results in similar or better 
performance than the best included single data type for all considered multi-omic combinations. The best 
performing multi-omic combination resulted in an average AUC of 0.714 by integrating Clinical Lab data 
(CLIA), metabolites, and miRNAs. This integrated result was higher than the best of those three data 
types independently (0.696 AUC for miRNA). 
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Table 4.9 Summary of single and multi-omic classification performance. Classification performance 
metrics over 100 rounds of cross-validation are summarized by mean ± standard deviation.  

 AUC ER Sensitivity (TPR) Specificity (TNR) 
Methylation 0.583±0.13 0.442±0.09 0.608±0.19 0.508±0.20 

mRNA 0.494±0.16 0.507±0.12 0.500±0.18 0.486±0.18 
Metabolite 0.690±0.10 0.370±0.10 0.580±0.15 0.680±0.15 

Protein 0.571±0.14 0.411±0.12 0.563±0.18 0.615±0.18 
miRNA 0.696±0.12 0.347±0.11 0.706±0.14 0.600±0.21 

Endocrine 0.5843±0.12 0.451±0.12 0.545±0.19 0.552±0.15 
CLIA Lab 0.665±0.12 0.379±0.10 0.580±0.17 0.662±0.15 

CLIA + metabolite 0.696±0.13 0.331±0.11 0.613±0.16 0.732±0.16 
CLIA + metabolite + miRNA 0.714±0.10 0.320±0.10 0.675±0.16 0.684±0.12 

Methylation + mRNA 0.563±0.15 0.487±0.13 0.422±0.16 0.615±0.21 
Protein + metabolite + endocrine 0.693±0.10 0.353±0.11 0.618±0.18 0.680±0.11 
 
 
4.5. Integrating clinical and molecular data for improved classification performance 
 
To improve biomarker identification and classification performance, we have previously integrated 
molecular datasests with clinical, demographic, and physiological data to create a hybrid biomarker panel 
for further validation. Using a decision tree classifier (which does not require normalization between 
molecular and clinical features), each molecular dataset was merged with potential clinical datasets 
(excluding CAPS and other PTSD-defining variables). These hybrid datasets were used to train and test 
decision tree classifiers using nested cross-validation on the male 83-83 discovery cohort. The boosted 
decision tree classifier was implemented using the ‘gbm’ package in R. A summary of the hybrid panel 
performances using molecular and physiological data is shown in Table 4.10. 
 
 
 
Table 4.10 Summary of integrated physiological and molecular dataset classification performance. 

Molecular 
Dataset 

Cross-validated 
AUC in 52-52 

discovery dataset 

Test AUC in 
31-31 dataset 

Physiological markers 
identified Molecular markers identified 

Methylation 0.530 ± 0.188 0.416 
• Systolic blood pressure 
• Diastolic blood pressure 
• height 

• cg23771949 
• cg03890840 
• cg00001583 
• cg00007036 

Metabolite  
0.572 ± 0.181 0.677 • height 

• weight 
• Gamma-glutamylisoleucine* 
• Pro-hydroxyl-pro 

miRNA 0.674 ± 0.181 0.630 • bmi 
• systolic blood pressure 

• miR_33a 
• miR_421 
• miR_146b 
• miR_382 
• miR_374a 

Protein 0.642 ± 0.190 0.489 • systolic blood pressure 
• Waist circumference 

• GSTO1-GSA 
• SERPINA10-IFS 
• PPBP-ICL 
• PTGDS-AQG 
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5. Identification and characterization of human PTSD subtypes from DNA methylation 
data 

We have continued to use unsupervised learning techniques to identify molecularly-defined subtypes of 
PTSD. To show agreement among many levels of biological data, we created a “subtype agreement 
matrix” to quantify the overlap of PTSD subtypes signals.  
Two PTSD subtypes were identified from promoter-region DNA Methylation patterns. To reduce the 
noise, probe-level methylation patterns were projected onto known biology pathways using pathifier [68]. 
This reduced the dimensionality of the data from approximately 150,000 probes to 1320 compute 
pathway activity scores. Next, hierarchical and model-based clustering were used to identify subtypes 
from the data. A heatmap of pathway activity scores for all PTSD subjects is shown in Figure 5.1, 
including a hierarchical clustering dendrogram indicating the subtypes. Model-based clustering of the 
pathway activity scores identified two PTSD subtypes, containing 36 and 45 subjects.  
To quantify the agreement between these subtypes identified from DNA methylation patterns and other 
molecular data types (mRNA, protein, metabolite, etc), we performed differential expression analysis 
between PTSD subgroups. Each data type was independently used to identify subtypes, and all remaining 
datasets were used to quantify subtype signal. The heatmap in Figure 5.2 shows the similarity and 
strength of PTSD subtype signals across all molecular data types. Although there is not strong agreement 
between all data types, the heatmap clearly shows lack of agreement if mRNA, Endocrine, or Clinical 
data is used to define the subtypes (indicated by close to 0% DEGs in all other data types). Additionally, 
clusters identified from all methylation probes show good agreement with cluster identified from probes 
only in the promoter region, indicating a location-independent epigenetic signal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 Heatmap and dendrogram of DNA Methylation patterns defining PTSD subtypes. 
Columns represent individual subjects, while rows indicate the methylation patterns of a specific CpG 
probe. The color indicates levels of methylation. The blue and green color bar along the top dive the 
PTSD into subjects into Subtype 1 (blue) and Subtype 2 (green). 
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Figure 5.2 Heatmap of PTSD subtype DEG signals. Two PTSD subgroups were identified from the 
dataset indicated by each column label. The fraction of differentially expressed features between the 
identified subtypes is computed in all datasets (indicated by the row label).  
 
 
Due to the long term stability of DNA methylation, and literature suggesting trauma may result in DNA 
methylation changes [17], we selected DNA methylation as the primary dataset for PTSD subgroup 
identification. In both the dataset containing all methylation probes, and the promoter region only subset, 
approximately 40% of CpG sites were differentially methylated between PTSD Subtype 1 and 2 
(uncorrected p<0.01). The dataset showing the next strongest signal between these two subtypes was the 
Clinical dataset, indicating subtypes differences in PTSD symptom severity (CAPS, PTSD Checklist 
Score, etc). 

6. Development and analysis of an HPA-Circadian-Metabolic model 

Cortisol is a neuroendocrine hormone of Hypothalamus-Pituitary-Adrenal (HPA) axis, known to oscillate 
in a circadian manner. Stress modulates cortisol levels to maintain homeostasis by counteracting the stress 
effect by regulating the metabolic and neurological processes. Disturbances in cortisol peak and nadir 
levels, period, and amplitude are known to contribute to several neuropsychiatric diseases. In this study 
we focused on the cortisol profiles in major depressive disorder (MDD) and Post-traumatic Stress 
Disorder (PTSD). A systems-level perspective of cortisol dynamics is essential to analyze the underlying 
mechanisms that shape the cortisol profiles. We analyzed a detailed model incorporating the circadian 
mechanisms to characterize cortisol profiles in healthy, MDD and PTSD subjects. 
 



61	
	

6.1 Characterization of cortisol profiles and Model Development 

The data for cortisol  profiles in  three subjects each, for healthy, MDD and PTSD phenotypes was 
published by Yehuda et al. [69] and was modeled and analyzed by Sriram et al. [70].  The simulated 
cortisol profiles for 50 sets of model parameters had shown statistically significant difference in the peak 
and nadir levels in the healthy, MDD and PTSD subjects. We used the mean peak and nadir values of the 
cortisol profiles to characterize the disease phenotypes in the simulations (Figure 6.1). We developed an 
integrated model from published literature [70-74] with submodules for the SCN clock, HPA axis and 
adrenal clock.  The model consists of 60 ODEs and 235 parameters. The detailed model was 
reparametrized after integration and simulated using MATLAB. The parameters for steroidogenesis in the 
adrenal gland were obtained from the data reported by Son et al. [74]. Figure 6.2A shows model 
simulations for the circadian dynamics of the SCN clock, cortisol, adrenal clock and steroidogenesis (star 
protein). The model was tested for obtaining qualitative profiles and appropriate fold changes of cortisol 
under normal and mutant conditions to verify the cortisol dynamics as reported in experimental 
observations. Figure 6.2B depicts the scenarios for the effect of ablation of SCN drive, ablation of adrenal 
clock and ablation of both the clocks on cortisol profiles. 

 
Figure 6.1 (A) Cortisol peak and nadir levels in healthy, MDD and PTSD subjects (B) Dynamic 
cortisol profiles of healthy, MDD and PTSD subjects. Reproduced from [69]. 
 

 
Figure 6.2 (A) Model dynamic for SCN, HPA and adrenal components. (B) Cortisol response under 
mutant scenarios. 
 
 

(B)	(A)	

A 
 

B 
 



62	
	

 
6.2 Parametric Sensitivity Analysis 

A local sensitivity analysis of the 235 model parameters was performed using MATLAB to assess the 
most sensitive parameters towards cortisol profiles. We analyzed the sensitivity of cortisol peak, nadir and 
period to obtain insights into MDD and PTSD specific cortisol phenotype. The sensitivity analysis reveals 
that the cortisol nadir level is highly sensitive, as compared to its peak and period. The parameters for 
kinetics of the Cry protein in SCN clock, steroidogenesis in HPA and the auxiliary loop in adrenal clock 

modul
e 

showe
d 

highes
t 

sensiti
vity to 
cortiso

l 
profile

s 
(Figur
e 6.3). 
 
Figur

e 6.3 
Sensitivity indices for model parameters with respect to cortisol peak, nadir and period. 
 

6.3 Perturbation Analysis 

A fold change perturbation analysis was performed for all the model parameters ranging from 0.1-10 fold. 
The mean of peak and nadir levels of cortisol oscillations were used to categorize MDD, PTSD or normal 
cortisol response. PTSD specific profiles were observed only for the parameter perturbations in the HPA 
axis and adrenal clock and not for the SCN clock. A higher perturbation was required to induce PTSD 
specific cortisol response as compared to MDD. While the period of MDD profiles due to adrenal 
perturbation was <23.5, the period for MDD profiles due to SCN perturbation was >24.2 hrs. The system 
elicits robust cortisol response over 25% of perturbations in the overall parameter space with only 7 
parameters sensitive to stress in this range (Figure 6.4). 
 
6.4 Insights into the etiology of the disease 

The model analysis revealed the distinction in circadian pattern of plasma cortisol in MDD and PTSD 
with increased cortisol period for PTSD and decreased period in MDD. The model shows the decrease in 
circadian amplitude for MDD, which is in line with published data [74-75]. Cortisol nadir levels are 
highly sensitive as compared to its peak levels to the model parameters. The parameters with higher 
sensitivity can induce both MDD and PTSD specific cortisol profiles on perturbation in either direction. 
The processes of steroidogenesis and the auxiliary feedback loop in the adrenal clock are most likely to 
affect cortisol rhythm in neurological disorders. The cortisol profile is sensitive to depressive stress but 
relatively robust towards post-traumatic stress. The model suggests that the disruption in adrenal response 
is an essential etiology for PTSD. The model also shows that cortisol-mediated serotonergic drive is 
decreased in PTSD, implying the importance of serotonin supplementation in PTSD.  
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Figure 6.4 Perturbation analysis showing cortisol response for sensitive parameters and the 
comparison of disease status with the cortisol period. 
 
6.5 Statistical analysis of Multi-omics data from PTSD consortium 

We performed statistical analysis on the data for metabolomics, clinical variables, neuro-endocrinology, 
physiology and proteomics data from the 82/82 cohort. To ascertain the stable features in the 82/82 
datasets we performed bootstrapping on the data with 1000-fold random sampling of 50 of 82 subjects for 
control and PTSD groups. The randomly sampled 50/50 data sets were used for statistical analysis and the 
process was repeated for 1000 iterations. Several two-sample statistical tests, including student’s t-test for 
significance in difference of means and Wilcox test for significance in difference of medians were 
performed to identify the key features that are different between PTSD and control subjects. The stable 
features were identified using the following filtration criteria: p<0.01 for difference in mean or median 
along with a mean or median fold change of at least 25% in at least 50% of the bootstrap iterations. 
Several features showed differences in the variances with significant mean differences after removal of 
the outliers. Such scenarios may not be captured using just statistical tests for mean or median. We 
accounted for statistically significant difference in the properties of distributions along with the 
significant differences in the fold change information to filter the features. Table 6.1 reports the features 
and the mean of the mean and median fold change (PTSD/Control) across 1000 random iterations. 
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Table 6.1 Summary of stable features with p<0.01 and a mean or median fold-change of at least 
25% (lower or higher) in at least 50% of the 1000 bootstrapping iterations. 
Omics variables Mean fold change Median fold change 
Immune and Inflammation 

  Cytokine IL-6 4.57 1.40 
Cytokine TNF-alpha 1.24 1.13 
Cytokine IL-12 0.28 1.03 
Cytokine IFN-g 1.18 1.94 
CD133+KDR+CD14+ monocyte 1.58 1.37 
CD16nCD56p (% NK Cells) 0.79 0.85 
CD16pCD56n (% NK Cells) 1.41 1.44 
Clinical Lab     
Aspartate transaminase 1.26 1.18 
Alanine Aminotransferase 1.26 1.00 
Gamma-glutamyltransferase 1.14 1.36 
C reactive protein 1.87 1.45 
Neuroendocrine     
Cordif (cor1-cor2) 1.43 1.38 
Urine Norepinephrine 1.18 1.11 
5b-tetrahydrocortisol 0.83 0.77 
Physiological     
pulse 1.12 1.13 
Proteomics     
APOC4.AWF 1.42 1.55 
C4BPB.LIQ 1.40 1.86 
CRP.GYS 1.96 1.68 
PRG4.DQY 1.29 1.22 
Metabolomics   
Insulin 1.54 1.43 
BDNF  1.18 1.17 
m12propanediol 1.67 1.06 
m13dipalmitoylglycerol 1.44 1.25 
m5oxoproline 1.10 1.10 
m7alphahydroxycholesterol 1.66 1.27 
ADSGEGDFXAEGGGVR 3.59 1.90 
cotinine 4.27 1.00 
dihomolinoleate202n6 0.79 0.79 
docosahexaenoateDHA226n3 0.78 0.82 
DSGEGDFXAEGGGVR 6.08 2.66 
eicosenoate201n9or11 0.75 0.85 
hypoxanthine 1.34 1.31 
lactate 1.29 1.32 
Nacetylornithine 0.72 0.74 
phenyllactatePLA 1.20 1.17 
pyruvate 1.27 1.29 
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6.6 Analysis of Metabolomics data in PTSD: The source of lactate/pyruvate/FFA in 
PTSD 

The analysis of the metabolomics data shows that lactate, pyruvate, citrate, and the urea cycle components 
are significantly higher in PTSD subjects.  The analysis of the uptake and release rates for these key 
metabolites by 10 different tissue types in the human body reveals that muscle, liver and adipose tissues 
are most likely to render higher levels of these metabolites in blood (Tables 6.2-6.3). The statistical 
analysis reveals a net catabolic state in these tissues leading to such a metabolic phenotype. The higher 
levels of adrenaline/catacholamine can induce a catabolic state in the tissue leading to increased 
pyruvate/lactate, fatty acids and urea cycle. The analysis reveals that the muscle-liver-adipose axis can be 
affected due to higher adrenal/cortisol ratio. 
 
Table 6.2 The physiological rates of metabolite transport for different tissues as reported in [76]. 

 
For 70 kg man ~22 BMI    Metabolite flux (mmol/min) 

Tissue Tissue Wt. Blood flow Vol. flow Gluc  Pyr Lact FFA Ala TG GLR 
  kg lit/min lit/min/kg               
Brain 1.45 0.75 0.52 0.38 0 0 0 0 0 0 
Liver 1.5 1.5 1.00 -0.731 0 0.27 0.21 0.32 -0.029 0.14 
Muscle 20 0.9 0.05 0.038 0.005 -0.11 0.046 -0.04 0.003 -0.003 
Adipose 11 0.36 0.03 0.04 0 -0.06 -0.211 0 0.02 -0.097 
Heart 0.25 0.25 1.00 0.04 0 0.04 0.035 0 0 0 
GI Track 2 1.1 0.55 0.076 0 0 -0.12 0 0.006 -0.04 
Kidney 0.25 0.55 2.20 -0.06 0 0 0 -0.28 0 0 
Lungs 0.7 0.25 0.36 

 
0 0 0 0 0 0 

Blood/RBC 2 
   

-0.005 -0.14 0 0 0 0 
Other/Bones 28.85 0.09 

         
 
Table 6.3 The net metabolite flux and metabolic pathways active in each tissue. Yellow highlighted 
fields represent the major contributing tissues to the net flux for glucose, pyruvate, lactate, fatty acids and 
active metabolic pathways. 
Glysis: Glycolysis; Glnsis: Gluconeogenesis; Glyc.met: Glycogen metabolism; FFA synth: Fatty acid 
synthesis; Beta Oxdn: beta-oxidation; TG met: Triglyceride metabolism; Chol met: Cholesterol 
metabolism; Prot met: Protein metabolism; Insulin Depdt: Insulin dependent regulation.  
             Net flux (mmol/l/kg)       Metabolic Pathways         
Tissue Glucose Pyr Lact. FFA Glysis Glnsis Glyc TCA Urea FFA  Beta TG Chol Prot Insulin  
              met cycle cycle synth oxdn met met met  Depdt 
Brain 0.735 0.000 0.000 0.000                       
Liver -0731 0.000 0.270 0.210                       
Muscle 0.844 0.111 -2.489 1.022                       
Adipose 1.222 0.000 -1.711 -6.447                       
Heart 0.040 0.000 0.040 0.035                       
GI Track 0.138 0.000 0.000 -0.218                       
Kidney -0.027 0.000 0.000 0.000                       
Lungs 0.000 0.000 0.000 0.000                       
Blood/RBC                               
Other/Bones                               
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7. Development of data analysis pipelines for large molecular datasets 

7.1 Development of Small RNA sequencing data analysis pipeline (sRNAnalyzer) 
 
To achieve better coverage of the transcriptome, we improved the RNA analysis pipeline described in our 
earlier publication [77]. The new pipeline comprises three functional modules (Figure 7.1): data pre-
processing, sequence mapping (alignment), and result summarization. Bowtie and Bowtie 2 aligners are 
used to handle both small and large RNA sequence mapping. The pipeline also includes both endogenous 
and exogenous RNA mapping steps. A local probabilistic model is used to assign reads to the most-likely 
sequence identity. Because of its modular design, the pipeline allows rapid modifications of each module 
without affecting the overall pipeline operation, for example adding a reference database or changing the 
order of databases used in read sequence alignment.  
On selecting features to generate the biomarker panel, we applied support vector machine (SVM) with 
recursive feature elimination (SVM-RFE) algorithm [78] to find an optimal subset of features to classify 
patient and control groups. The SVM-RFE was applied to select peptides (proteins) and miRNAs to 
separate the PTSD- and PTSD+ groups. The 5-fold cross-validation was repeated 100 times to identify 
optimized features and to obtain an unbiased estimation of classification accuracy. The importance of each 
feature in the classification was determined based on the selection frequency from 5-fold cross-validations. 
The features were sorted in order of their frequencies. By increasing the number of features, SVM models 
were constructed and the average classification accuracies were computed. The optimal feature set was 
then determined at the highest average classification accuracy of the test set. For integrative analysis of 
SRM and miRNA-seq data, we scaled the data into z-scores separately and then concatenated the two 
datasets. 
 

 
 
Figure 7.1 Main framework of sRNAnalyzer. The pipeline can be divided into three functional modules 
which are separated by doted lines. The data format for each process is indicated in blue characters. 
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7.2 Automation of imputation and meta-analysis pipeline for GWAS data 
 
With the ever increasing availability of densely genotyped reference genomes, it has become possible to 
impute large set of genetic variants from carefully chosen tagger-SNPs available on commercial arrays 
(Figure 7.2). However, this imputation process, aside from requiring huge computational resources, 
involves careful execution of several steps. We have prepared a set of bash script files to automate the 
imputation and meta-analysis process of genome studies (Figure 7.3). This will enable us to perform the 
GWAS analysis with a more dense coverage data, which may lead to improvement in power of 
association statistics, and help identify the exact location of the causative variants. Also, some widely 
studied SNPs in PTSD are not genotyped on Illumina’s HumanOmniExpress BeadChip, and need to be 
imputed. 
 
 

Figure 7.2 GWAS improvement from imputation in 147 subject dataset (shown only for Chromosome 4). 
Left: original GWAS manhattan plot, showing significance p-values ordered by chromosomal position. Right: 
improved statistical significance of genetic variants due to improved coverage by imputation. 
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Our imputation pipeline is summarized on the workflow diagram shown in Figure 7.3. First, strand 
orientation of genotyped data is checked and corrected with PLINK. Then, the data is split into individual 
chromosomes. As pre-phasing improves imputation accuracy and speed, the study data is pre-phased with 
SHAPEIT using genetic map data for build 37. Imputation is done for a window of 5Mb at a time with 
IMPUTE2 using phased reference panel from 1000 Genome Project phase 3 dataset. Then the imputed 
data is reassembled with GTOOL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3 Overview of automatic imputation pipeline. 
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